Holooly Plus Logo

Question 11.9: The 45-kVA, 220-V synchronous motor of Example 11.8 is to be......

The 45-kVA, 220-V synchronous motor of Example 11.8 is to be again operated at rated torque and speed from a field-oriented control system. Calculate the required motor field current and the per-unit terminal voltage and current if the unity-power-factor algorithm described above is implemented.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We will follow the individual steps outlined above.

Step 1. Since the motor is operating at rated speed, the desired terminal voltage will be the rated line-to-neutral voltage of the machine.

V_{\mathrm{a}}=\frac{220}{\sqrt{3}}=127 \mathrm{~V}=1.0  \text {per unit}

Step 2. Setting T_{\text {ref }}=358 \mathrm{~N} \cdot \mathrm{m} and \omega_{\mathrm{m}}=(2 /\text{poles}) \omega_{\mathrm{e}}=40 \pi, the rms armature current can be calculated from Eq. 11.42

I_{\mathrm{a}}=\frac{P_{\mathrm{ref}}}{3 V_{\mathrm{a}}}=\frac{T_{\mathrm{ref}} \omega_{\mathrm{m}}}{3 V_{\mathrm{a}}} \quad \quad \quad (11.42)

I_{\mathrm{a}}=\frac{T_{\mathrm{ref}} \omega_{\mathrm{m}}}{3\left(V_{\mathrm{a}}\right)}=\frac{358 \times(40 \pi)}{3 \times 127}=118 \mathrm{~A}

As calculated in Example 11.8, I_{\text {base }}=118 \mathrm{~A} and thus I_a = 1.0 per unit. This is as expected, since we want the motor to operate at rated torque, speed and terminal voltage, and at unity power factor.

Step 3. Next calculate δ from Eq. 11.43. This calculation requires that we determine the synchronous inductance L_s.

L_{\mathrm{s}}=\frac{X_{\mathrm{s}}}{\left(\omega_{\mathrm{e}}\right)_{\text {rated }}}=\frac{0.899}{120 \pi}=2.38  \mathrm{mH}

Thus

\begin{aligned}\delta & =-\tan ^{-1}\left(\frac{\omega_{\mathrm{e}} L_{\mathrm{s}} I_{\mathrm{a}}}{V_{\mathrm{a}}}\right) \\ \\& =-\tan ^{-1}\left(\frac{120 \pi 2.38 \times 10^{-3} \times 118}{127}\right)=-0.695  \mathrm{rad}=-39.8^{\circ}\end{aligned}

Step 4. We can now calculate the desired values of i_Q  \text{and}  i_D from Eqs. 11.44 and 11.45.

\left(i_{\mathrm{Q}}\right)_{\mathrm{ref}}=\sqrt{2} I_{\mathrm{a}} \cos \delta=128 \mathrm{~A}

and

\left(i_{\mathrm{D}}\right)_{\mathrm{ref}}=\sqrt{2} I_{\mathrm{a}} \sin \delta=-107 \mathrm{~A}

Step 5. \left(i_{\mathrm{F}}\right)_{\text {ref }} is found from Eq. 11.46

\left(i_{\mathrm{F}}\right)_{\text {ref }}=\frac{2}{3}\left(\frac{2}{\text { poles }}\right) \frac{T_{\text {ref }}}{L_{\mathrm{af}}\left(i_{\mathrm{Q}}\right)_{\mathrm{ref}}}=\frac{2}{3}\left(\frac{2}{6}\right) \frac{358}{0.168 \times 128}=3.70 \mathrm{~A}

Related Answered Questions