Holooly Plus Logo

Question 11.11: The three-phase, 230-V, 60-Hz, 12-kW, four-pole induction mo......

The three-phase, 230-V, 60-Hz, 12-kW, four-pole induction motor of Example 6.4 (with R_2 = 0.2  Ω) is to be operated from a variable-frequency, constant-volts-per-hertz motor drive whose terminal voltage is 230 V at 60 Hz. The motor is driving a load whose power can be assumed to vary as

P_{\text{load}}=10.5\left(\frac{n}{1800}\right) ^3  kW

where n is the load speed in r/min. Motor rotational losses can be assumed to be negligible. Write a MATLAB script to find the line-to-line terminal voltage, the motor speed in r/min, the slip and the motor load in kW for (a) a source frequency of 60 Hz and (b) a source frequency of 40 Hz.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

As the electrical frequency f_e is varied, the motor reactances given in Example 6.4 must be varied as

X=X_{0}\left(\frac{f_{\mathrm{e}}}{60}\right)

where X_0 is the reactance value at 60 Hz. Similarly, the line-to-neutral armature voltage must be varied as

V_{\mathrm{l}}=\frac{220}{\sqrt{3}}\left(\frac{f_{\mathrm{e}}}{60}\right)=127\left(\frac{f_{\mathrm{e}}}{60}\right)  \mathrm{V}

From Eq. 4.40, the synchronous angular velocity of the motor is equal to

\omega_{\mathrm{s}}=\left(\frac{2}{\text { poles }}\right) ω_{\mathrm{e}}\quad \quad \quad (4.40)

\omega_{\mathrm{s}}=\left(\frac{4 \pi}{\text { poles }}\right) f_{\mathrm{e}}=\pi f_{\mathrm{e}}  \mathrm{rad} / \mathrm{sec}

and, at any given motor speed \omega_{\mathrm{m}}, the corresponding slip is given by

s=\frac{\omega_{\mathrm{s}}  –  \omega_{\mathrm{m}}}{\omega_{\mathrm{s}}}

Using Eqs. 11.51 through 11.53, the motor speed can be found by searching over \omega_{\mathrm{m}} for that speed at which P_{\text {load }}=\omega_{\mathrm{m}} T_{\text {mech}}. If this is done, the result is:

T_{\text {mech }}=\frac{1}{\omega_{\mathrm{s}}}\left[\frac{n_{\mathrm{ph}} V_{1, \mathrm{eq}}^{2}\left(R_{2} / s\right)}{\left(R_{1, \mathrm{eq}}+\left(R_{2} / s\right)\right)^{2}+\left(X_{1, \mathrm{eq}}+X_{2}\right)^{2}}\right]\quad \quad \quad (11.51)

R_{1, \mathrm{eq}}+j X_{1, \mathrm{eq}}=\frac{j X_{\mathrm{m}}\left(R_{1}+j X_{1}\right)}{R_{1}+j\left(X_{1}+X_{\mathrm{m}}\right)} \quad \quad \quad (11.53)

a. For f_e = 60 ~Hz:

Terminal voltage = 230 V line-to-line

Speed = 1720 r/min

Slip = 4.4%

P_{\text{load}} = 9.17 ~kW

b. For f_e = 40 ~Hz:

Terminal voltage = 153 V line-to-line

Speed = 1166 r/min

Slip = 2.8%

P_{\text{load}} = 2.86 ~kW

Here is the MATLAB script:

The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

Script File

clc

clear

%Here are the 60-Hz motor parameters

V10 = 230/sqrt(3) ;

Nph = 3;

poles = 4 ;

fe0 = 60 ;

R1 = 0.095;

R2 = 0.2;

X10 = 0.680;

X20 = 0.672;

Xm0 = 18.7;

% Two frequency values

fe1 = 60 ;

fe2 = 40 ;

for m = 1:2,

if m== 1

fe = fe1 ;

else

fe = fe2 ;

end

% Calculate the reactances and the voltage

X1 = X10*(fe/fe0) ;

X2 = X20*(fe/fe0) ;

Xm = Xm0* (fe/fe0) ;

V1 = V10*(fe/fe0) ;

%Calculate the synchronous speed

omegas = 4*pi*fe/poles;

ns = 120*fe/poles;

%Calculate stator Thevenin equivalent

V1eq = abs(V1*j*Xm/(R1 + j*(X1+Xm)) ) ;

Z1eq = j*Xm*(R1+j*X1)/(R1 + j*(X1+Xm)) ;

R1eq = real(Z1eq) ;

X1eq = imag(Z1eq) ;

%Search over the slip until the Pload = Pmech

slip = 0. ;

error = 1 ;

while error >= 0;

slip = slip + 0.00001;

rpm = ns*(1-slip) ;

omegam = omegas* (1-slip) ;

Tmech = (1/omegas)*Nph*V1eq^2 *(R2/slip) ;

Tmech = Tmech/( (R1+R2/slip)^2 + (X1+X2)^2) ;

Pmech = Tmech*omegam;

Pload = 10.5e3*(rpm/1800)^3;

error = Pload- Pmech;

end %End of while loop

fprintf ('\nFor fe = %g [Hz] : ',fe)

fprintf ('\n Terminal voltage = %g [V l-l] ',V1*sqrt(3))

fprintf ('\n rpm = %g',rpm)

fprintf('\n slip = %g [percent] ',100*slip)

fprintf('\n Pload = %g [kW] ',Pload/1000)

fprintf ( ' \n\n' )

end

Related Answered Questions