Holooly Plus Logo

Question 3.11: The Bag Wave Function for Massive Quarks Show that the bag w......

The Bag Wave Function for Massive Quarks

Show that the bag wave function of massive quarks is

\Psi=N\left(\begin{array}{c} j_{\ell_{\kappa}}(p r) \chi_{\kappa}^{\mu} \\ \mathrm{i} \frac{p}{E+m} \operatorname{sgn}(\kappa) j_{\bar{\ell}_{\kappa}}(p r) \chi_{-\kappa}^{\mu} \end{array}\right) \mathrm{e}^{-\mathrm{i} E t}        (1)

with

\begin{aligned} E & =\sqrt{p^{2}+m^{2}}, \\ \ell_{\kappa} & =\left\{\begin{array}{cc} -\kappa-1 & \text { for } \kappa<0 \\ \kappa & \text { for } \kappa>0 \end{array},\right. \\ \bar{\ell}_{\kappa} & =\left\{\begin{array}{cc} -\kappa & \text { for } \kappa<0 \\ \kappa-1 & \text { for } \kappa>0 \end{array} .\right. \end{aligned}

Show, furthermore, that the normalization condition

\int\limits_{\text {bag }} \mathrm{d}^{3} r \Psi^{\dagger} \Psi=1     (2)

leads to

N=\frac{p}{\sqrt{2 E(E R+\kappa)+m}} \frac{1}{\left|j \ell_{\kappa}(p R)\right| R},         (3)

R being the bag radius.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Adding the mass term to (3.113)

(\not p) \Psi=0    (3.113)

yields

(\not p-m) \Psi=0    (4)

Correspondingly (3.119) becomes

\left[-\mathrm{i}\left(\begin{array}{cc} 0 & \sigma_{r} \\ \sigma_{r} & 0 \end{array}\right)\left(\frac{\partial}{\partial r}+\frac{1}{r}-\frac{\beta}{r} \hat{K}\right)+\beta m\right] \Psi=E \Psi      (5)

and (3.121)

\left(\frac{\mathrm{d}}{\mathrm{d} r}+\frac{1}{r}-\frac{\kappa}{r}\right) f(r)=E g(r)        (3.121a)

\left(\frac{\mathrm{d}}{\mathrm{d} r}+\frac{1}{r}+\frac{\kappa}{r}\right) g(r)=-E f(r)        (3.121b)

then becomes

\left(\frac{\mathrm{d}}{\mathrm{d} r}+\frac{1}{r}-\frac{\kappa}{r}\right) f(r)-(E-m) g(r)=0     (6a)

and

\left(\frac{\mathrm{d}}{\mathrm{d} r}+\frac{1}{r}+\frac{\kappa}{r}\right) g(r)+(E+m) f(r)=0 .     (6b)

Now we insert g(r)=j_{\ell_{\kappa}}(p r) and f(r)=-[p /(E+m)] \operatorname{sgn}(\kappa) j_{\bar{\ell}_{\kappa}}(p r) and evaluate the left-hand sides of (6a) and (6b), respectively:

\frac{-p^{2}}{E+m} \operatorname{sgn}(\kappa)\left(\frac{\mathrm{d}}{\mathrm{d}(p r)}+\frac{1-\kappa}{p r}\right) j_{\bar{\ell}_{\kappa}}(p r)-(E-m) j \ell_{\kappa}(p r)=0      (7a)

and

p\left(\frac{\mathrm{d}}{\mathrm{d}(p r)}+\frac{1+\kappa}{p r}\right) j_{\ell_{\kappa}}(p r)-p \operatorname{sgn}(\kappa) j_{\bar{\ell}_{\kappa}}(p r)=0 .      (7b)

With the help of recursion relations (3.127)

\begin{aligned} \left(\frac{\mathrm{d}}{\mathrm{d} z}+\frac{1-\kappa}{z}\right) j_{\bar{\ell}}(z) & =A j_{\ell}(z), & (3.127a) \\ \left(\frac{\mathrm{d}}{\mathrm{d} z}+\frac{1+\kappa}{z}\right) A j_{\ell}(z) & =-j_{\bar{\ell}}(z) . & (3.127b) \end{aligned}

(c=-\operatorname{sgn}(\kappa)) we then obtain

\frac{p^{2}}{E+m} j_{\ell_{\kappa}}(p r)-\frac{p^{2}}{E+m} j_{\ell_{\kappa}}(p r)=0     (8a)

and

p \operatorname{sgn}(\kappa) j_{\bar{\ell}_{\kappa}}(p r)-p \operatorname{sgn}(\kappa) j_{\bar{\ell}_{\kappa}}(p r)=0   (8b)

This yields the wave function of a massive quark in the MIT bag

\Psi=N\left(\begin{array}{c} j_{l \kappa}(p r) \chi_{\kappa}^{\mu} \\ i \frac{p}{E+m} \operatorname{sgn}(\kappa) j_{\bar{l}_{\kappa}}(p r) \chi_{-\kappa}^{\mu} \end{array}\right) e^{-i E t}

which transforms into (3.128) for m \rightarrow 0. Accordingly we obtain from (3.129) and (3.130)

ψ=N\left(\begin{array}{c}{{j_{\ell}(E r)\;\chi_{\kappa}^{\mu}(\theta,\phi)}}\\ {{\mathrm{i\:sgn}(\kappa)\:j_{\bar{\ell}}(E r)\:\chi_{-\kappa}^{\mu}(\theta,\phi)}}\end{array}\right)\,\mathrm{e}^{-\mathrm{i}E t}\ .       (3.128)

\left(\begin{array}{c} -\operatorname{sgn}(\kappa) j_{\bar{\ell}}(E R) \chi_\kappa^\mu(\theta, \phi) \\ -\mathrm{i} j_{\ell}(E R) \chi_{-\kappa}^\mu(\theta, \phi) \end{array}\right)=\left(\begin{array}{c} j_{\ell}(E R) \chi_\kappa^\mu(\theta, \phi) \\ \mathrm{i} \operatorname{sgn}(\kappa) j_{\bar{\ell}}(E R) \chi_{-\kappa}^\mu(\theta, \phi) \end{array}\right)    (3.129)

j_{\ell}(E R)=-\operatorname{sgn}(\kappa) j_{\bar{\ell}}(E R) .      (3.130)

by substituting \operatorname{sgn}(\kappa) \rightarrow[p /(E+m)] \operatorname{sgn}(\kappa) the modified linear boundary condition

j_{l \kappa}(p r)=-\operatorname{sgn}(\kappa) \frac{p}{E+m} j_{\bar{l}_{\kappa}}(p r).      (9)

By means of (9) we then evaluate the normalization integral:

\begin{aligned} 1 & =\int_{\text {bag }} \mathrm{d}^{3} r \Psi^{\dagger} \Psi \\ & =\int_{0}^{R} \mathrm{~d} r r^{2}\left[j_{\ell_{\kappa}}^{2}(p r)+\frac{p^{2}}{(E+m)^{2}} j_{\bar{\ell}_{\kappa}}^{2}(p r)\right] N^{2} . & (10) \end{aligned}

Employing the differentiation and recursion formulas of the Bessel functions (see (3.139))

\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}(z)} j_l(z) & =\frac{1}{2 l+1}\left[l j_{l-1}(z)-(l+1) j_{l+1}(z)\right], \\ j_{l+1}(z)+j_{l-1}(z) & =\frac{2 l+1}{z} j_l(z), & (3.139)\end{aligned}

\begin{aligned} j_{n}^{\prime}(z) & =\frac{n}{z} j_{n}(z)-j_{n+1}(z), \\ j_{n-1}^{\prime}(z) & =\frac{n-1}{z} j_{n-1}(z)-j_{n}(z), \\ j_{n+1}^{\prime}(z) & =-\frac{n+2}{z} j_{n+1}(z)+j_{n}(z), \\ j_{n+1}(z)+j_{n-1}(z) & =\frac{2 n+1}{z} j_{n}(z) & (12) \end{aligned}

we get

\begin{aligned} \frac{\mathrm{d}}{\mathrm{d} z} & \left.z^{3}\left(j_{n}^{2}(z)-j_{n-1}(z) j_{n+1}(z)\right)\right] \\ = & 3 z^{2}\left(j_{n}^{2}(z)-j_{n-1}(z) j_{n+1}(z)\right)+z^{3}\left[2 j_{n}(z)\left(-j_{n+1}(z)+\frac{n}{z} j_{n}(z)\right)\right. \\ & -j_{n-1}(z)\left(-\frac{n+2}{z} j_{n+1}(z)+j_{n}(z)\right) \\ & \left.-\left(\frac{n-1}{z} j_{n-1}(z)-j_{n}(z)\right) j_{n+1}(z)\right] \\ = & 3 z^{2}\left(j_{n}^{2}(z)-j_{n-1}(z) j_{n+1}(z)\right) \\ & +z^{3}\left[\frac{2 n}{z} j_{n}^{2}(z)-j_{n}(z)\left(j_{n+1}(z)+j_{n-1}(z)\right)+\frac{3}{z} j_{n-1}(z) j_{n+1}(z)\right] \\ = & 3 z^{2} j_{n}^{2}(z)+z^{3}\left[\frac{2 n}{z} j_{n}^{2}(z)-\frac{2 n+1}{z} j_{n}^{2}(z)\right] \\ = & 2 z^{2} j_{n}^{2}(z) . & (13) \end{aligned}

Terms of the form z^{2} j_{n}^{2}(z) appear in the integral (10). Therefore, relation (13) allows a direct evaluation of that integral:

\begin{aligned} 1= & N^{2} \frac{R^{3}}{2}\left[j_{\ell_{\kappa}}^{2}(p R)-j_{\ell_{\kappa}-1}(p R) j_{\ell_{\kappa}+1}(p R)\right. \\ & \left.+\frac{p^{2}}{(E+m)^{2}}\left(j_{\bar{\ell}_{\kappa}}^{2}(p R)-j_{\bar{\ell}_{\kappa}-1}(p R) j_{\bar{\ell}_{\kappa}+1}(p R)\right)\right] . & (14) \end{aligned}

Equation (14) can be simplified using (9). For \kappa<0 we have (see (12))

\begin{aligned} \bar{\ell}_{\kappa} & =\ell_{\kappa}+1, \quad \ell_{\kappa}=-\kappa-1 \\ j_{\ell_{\kappa}+1}(p R) & =\frac{E+m}{p} j \ell_{\kappa}(p R) \\ j_{\ell_{\kappa}-1}(p R) & =\frac{2 \ell_{\kappa}+1}{p R} j \ell_{\ell_{\kappa}}(p R)-j \ell_{\ell_{\kappa}+1}(p R) \\ & =\left(\frac{2 \ell_{\kappa}+1}{p R}-\frac{E+m}{p}\right) j_{\ell_{\kappa}}(p R) \\ j_{\ell_{\kappa}+2}(p R) & =\frac{2 \ell_{\kappa}+3}{p R} j \ell_{\ell_{\kappa}+1}(p R)-j \ell_{\kappa}(p R) \\ & =\left(\frac{2 \ell_{\kappa}+3}{p R} \frac{E+m}{p}-1\right) j_{\ell_{\kappa}}(p R) & (15) \end{aligned}

Equation (14) therefore becomes

\begin{aligned} 1= & N^{2} \frac{R^{3}}{2} j_{\ell_{\kappa}}^{2}(p R)\left[2-\left(\frac{2 \ell_{\kappa}+1}{p R}-\frac{E+m}{p}\right) \frac{E+m}{p}\right. \\ & \left.+\frac{p^{2}}{(E+m)^{2}}\left(1-\frac{2 \ell_{\kappa}+3}{p R} \frac{E+m}{p}\right)\right] \end{aligned}

\begin{aligned} = & N^{2} \frac{R^{3}}{2} j_{\ell_{\kappa}}^{2}(p R)\left[2-2 \ell_{\kappa}\left(\frac{E+m}{p^{2} R}+\frac{1}{(E+m) R}\right)\right. \\ & \left.-\frac{E+m}{p^{2} R}-\frac{3}{(E+m) R}+\frac{E+m}{E-m}+\frac{E-m}{E+m}\right] \\ = & N^{2} \frac{R^{3}}{2} j_{\ell_{\kappa}}^{2}(p R)\left(-2 \ell_{\kappa} \frac{2 E}{p^{2} R}-\frac{4 E-2 m}{p^{2} R}+\frac{4 E^{2}}{p^{2}}\right) \\ = & N^{2} \frac{R^{2}}{p^{2}} j_{\ell_{\kappa}}^{2}(p R)\left(2 \kappa E+m+2 E^{2} R\right) . & (16) \end{aligned}

Hence

N=\frac{p}{R\left|j_{\ell_{\kappa}}(p r)\right| \sqrt{2 \kappa E+m+2 E^{2} R}} .      (17)

For \kappa>0 an analogous calculation yields

\begin{aligned} & \bar{\ell}_{\kappa}=\ell_{\kappa}-1, \quad \ell_{\kappa}=\kappa, \\ & j_{\ell_{\kappa}-1}(p R)=-\frac{E+m}{p} j_{\ell_{\kappa}}(p R) \\ & j \ell_{\kappa}+1(p R)=\frac{2 \ell_{\kappa}+1}{p R} j \ell_{\ell_{\kappa}}(p R)-j \ell_{\ell_{\kappa}-1}(p R) \\ & =\left(\frac{2 \ell_{\kappa}+1}{p R}+\frac{E+m}{p}\right) j \ell_{\kappa}(p R) \text {, } \\ & j \ell_{\kappa}-2(p R)=\frac{2 \ell_{\kappa}-1}{p R} j \ell_{\ell_{\kappa}-1}(p R)-j \ell_{\kappa}(p R) \\ & =-\left(\frac{E+m}{p} \frac{2 \ell_{\kappa}-1}{p R}+1\right) j \ell_{\kappa}(p R) . & (18) \end{aligned}

Equation (14) now has the form

\begin{aligned} 1= & N^{2} \frac{R^{3}}{2} j_{\ell_{\kappa}}^{2}(p r)\left[2+\left(\frac{2 \ell_{\kappa}+1}{p R}+\frac{E+m}{p}\right) \frac{E+m}{p}\right. \\ & \left.+\frac{p^{2}}{(E+m)^{2}}\left(\frac{E+m}{p} \frac{2 \ell_{\kappa}-1}{p R}+1\right)\right] \\ = & N^{2} \frac{R^{3}}{2} j_{\ell_{\kappa}}^{2}(p r)\left(2 \ell_{\kappa} \frac{2 E}{p^{2} R}+\frac{2 m}{p^{2} R}+\frac{4 E^{2}}{p^{2}}\right) \\ = & N^{2} \frac{R^{2}}{p^{2}} j_{\ell_{\kappa}}^{2}(p r)\left(2 \kappa E+m+2 E^{2} R\right) .& (19) \end{aligned}

Therefore N is given by (17) also for \kappa>0. The corresponding normalization factors for massless quarks are obtained by setting p=E and m=0, i.e. N_{\kappa}(m=0)=\frac{E}{R\left|j_{l k}(E R)\right|} \frac{1}{\sqrt{2 E(\kappa+E R)}}( see also (3.142)).

N_{\kappa=-1}^2=\frac{E R}{2 R^3(E R-1) j_0^2(E R)},       (3.142)

Related Answered Questions

Question: 3.6

Verified Answer:

We start with the laboratory system. Here ...