Holooly Plus Logo

Question 3.7: The Scattering Tensor for Scalar Particles Repeat the steps ......

The Scattering Tensor for Scalar Particles

Repeat the steps leading to (3.18) for scalar particles.

W_{\mu\nu}^{\mathrm{incl.}}=\left(-g_{\mu\nu}+\frac{q_{\mu}q_{\nu}}{q^{2}}\right)W_{1}(\,Q^{2},\,\nu)

\\ +\left(P_{\mu}-q_{\mu}\frac{P\cdot q}{q^{2}}\right)\left(P_{\nu}-q_{\nu}\frac{P\cdot q}{q^{2}}\right)\frac{W_{2}(Q^{2},\nu)}{M_{\mathrm{N}}^{2}}    (3.18)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We start with (3.6). In the case of scalar particles all terms containing γ matrices vanish:

\Gamma_{\mu}=A\gamma_{\mu}+B P_{\mu}^{\prime}+C P_{\mu}+{\mathrm i}D P^{\prime\nu}\sigma_{\mu\nu}+{\mathrm i}E P^{\nu}\sigma_{\mu\nu}~,    (3.6)

\Gamma_{\mu}=B P_{\mu}^{\prime}+C P_{\mu}\,\,\,.    (1)

The requirement of gauge invariance, (3.8), then yields

q^{\mu}\,\bar{u}(P^{\prime})\,\Gamma_{\mu}\,u(P)=0\ .     (3.8)

q^{\mu}{\Gamma}_{\mu}=(P^{\prime}{}^{\mu}-P^{\mu})\Gamma_{\mu}=B(P^{\prime}{}^{\mu}-P^{\mu})P^{\prime}{}_{\mu}+C(P^{\prime}{}^{\mu}-P^{\mu})P_{\mu}

=B P^{\prime\mu}P_{\ \mu}^{\prime}-C P^{\mu}P_{\mu}=(B-C)M_{\mathrm{N}}^{2}=0\quad\Rightarrow C=B~,     (2)

\Gamma_{\mu}=B(P_{\mu}^{\prime}+P_{\mu})\,\,\,.     (3)

This is rewritten by replacing P_{\mu}^{\prime} by P_{\mu} and {\mathcal{q}}_{\mu}{\dot{\cdot}}

\Gamma_{\mu}=B(P_{\mu}+q_{\mu}+P_{\mu}) \\ =2B\left(P_{\mu}+\frac{1}{2}q_{\mu}\right) \\ =2B\left(P_{\mu}-q_{\mu}\frac{-q^{2}/2}{q^{2}}\right)

\\ =2\left(P_{\mu}-q_{\mu}\frac{P\cdot q}{q^{2}}\right)B(Q^{2})~,     (4)

where relation (3.7) has been employed in the last step. For a free scalar field one simply has

P^{\prime}\cdot q=P^{\prime2}-P^{\prime}\cdot P=\frac{1}{2}q^{2}\ .    (3.7)

u^{*}(P)u(P)=\mathrm{const}\ .      (5)

Therefore W_{\mu\nu} follows directly from \Gamma_{\mu} as

W_{\mu\nu}=\mathrm{const}\times \Gamma_{\mu}\Gamma_{\nu}

=\mathrm{const}\times\left(P_{\mu}-q_{\mu}\frac{P\cdot q}{q^{2}}\right)\left(P_{\nu}-q_{\nu}\frac{P\cdot q}{q^{2}}\right)B^{2}(Q^{2})\;.    (6)

Up to now we have considered the elastic process. To obtain the equation equivalent

to (6) for the inclusive inelastic case, we again have to replace B^{2}(\,Q^{2}\,) by B^{2}(\,O^{2},\,{\nu})=:W_{2}(\,Q^{2},\,\nu).

W_{\mu\nu}=\mathrm{const}\times\left(P_{\mu}-q_{\mu}\frac{P\cdot q}{q^{2}}\right)\left(P_{\nu}-q_{\nu}\frac{P\cdot q}{q^{2}}\right)W_{2}(Q^{2},\nu)\ .    (7)

Comparing this result with (3.18) shows that there is only a \textstyle W_{2} function and no \textstyle W_{1} function for scalar particles. Consequently (3.66) then becomes

\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}x\,\mathrm{d}y}\bigg|_{\mathrm{eN}}=\frac{4\pi s\alpha^{2}}{Q^{4}}\Biggl[x y^{2}F_{1}^{\mathrm{eN}}(Q^{2},x)+\Biggl(1-y-\frac{x y M_{\mathrm{N}}^{2}}{s}\Biggr)F_{2}^{\mathrm{eN}}(Q^{2},x)\Biggl].     (3.66)

\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}x\mathrm{d}y}=\frac{4\pi s\alpha^{2}}{Q^{4}}(1-y)F_{2}(Q^{2},x)~,     (8)

with a corresponding structure function F_{2}({Q^{2},x}). Here, in the last step, the term x y M_{\mathrm{N}}^{2}/s has been neglected for large s.

Related Answered Questions

Question: 3.6

Verified Answer:

We start with the laboratory system. Here ...