The line integral of the vector field F=5xzi?+(3x2+2y)j?+x2zk?F=5 x z i^?+\left(3 x^2+2 y\right) j^?+x^2 z k^{?}F=5xzi?+(3x2+2y)j?+x2zk? along a path from (0, 0, 0) to (1, 1, 1) parametrised by (t, t², t) is ________.
Given that
E=5xzi?+(3x2+2y)j?+x2zk?=∫CF⃗⋅dr⃗=∫015t2dt+(3t2+2t2)2tdt+t3dt=4.41\begin{aligned}& E=5 x z i^?+\left(3 x^2+2 y\right) j^?+x^2 z k^? \\& =\int_C \vec{F} \cdot d \vec{r} \\& =\int_0^1 5 t^2 d t+\left(3 t^2+2 t^2\right) 2 t d t+t^3 d t=4.41\end{aligned}E=5xzi?+(3x2+2y)j?+x2zk?=∫CF⋅dr=∫015t2dt+(3t2+2t2)2tdt+t3dt=4.41