Holooly Plus Logo

Question 10.5: The potential seen by an electron with effective mass me^* i......

The potential seen by an electron with effective mass m^{*}_{e}  in a GaAs quantum well is approximated by a one-dimensional rectangular potential well of width 2L in such a way that

V(x)=0         for 0 <x<2L

and

V(x)=\infty

elsewhere.

(a) Find the eigenvalues E_{n}, eigenfunctions \psi _{n}, and parity of \psi _{n}.

(b) The system is subject to a perturbation in the potential energy so that \hat{W} (x)=e\left|E\right| \hat{x}, where E is a constant electric field in the x direction. Find the value of the new energy eigenvalues to first order (the linear Stark effect) for a quantum well of a width of 10 nm subject to an electric field of 10^{5} Vcm^{-1}. Compare the change in energy value with thermal energy at room temperature.

(c) Find the expression for the second-order correction to the energy eigenvalues for the perturbation in (b).

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) It is given that the potential seen by an electron with effective mass m^{*}_{e} in a GaAs quantum well is approximated by a one-dimensional, rectangular potential well of width 2L in such a way that

V(x)=0

for 0 <x<2L and

V(x)=\infty

elsewhere, we find the eigenfunctions and eigenvalues by solving the time independent Schrödinger equation

\hat{H}^{(0)} \psi ^{(0)}_{n} = E^{(0)}_{n}\psi ^{(0)}_{n}

where the Hamiltonian for the electron in the potential is

\hat{H}^{(0)}=\frac{\hat{p}^{2}}{2m^{*}_{e} }+V(x)

The solution for the eigenfunctions is

\psi ^{(0)}_{n} =\frac{1}{\sqrt{L} } \sin \left(\frac{n\pi x}{2L} \right)                           where n = 1, 2, · · ·

and the parity of the eigenfunctions is even for odd-integer and odd for even-integer values of n.

The solution for the eigenvalues is

E^{(0)}_{n} =\frac{\hbar ^{2} k^{2}_{n} }{2m^{*}_{e} } =\frac{\hbar ^{2}n^{2} \pi^{2} }{8m^{*}_{e}L^{2} }                     where k_{n} =\frac{n2\pi }{2\times 2L} =\frac{n\pi }{2L}

(b) First-order correction to energy eigenvalues is

E^{(1)}_{n} =\left\langle n\left|\hat{W} \right|n \right\rangle =\left\langle n\left|e\right|E\left|\hat{x} \right| n \right\rangle =W_{nn} =\frac{e\left|E\right| }{L} \int\limits_{x=0}^{x=2L}{x\sin ^{2}\left(\frac{n\pi x}{2L} \right) dx }

Using the relation 2 \sin(x) \sin(y)=\cos(x−y)−\cos(x+y) with x=y =nπx/2L allows us to rewrite the integrand, giving

W_{nn} =\frac{e\left|E\right| }{2L} \int\limits_{x=0}^{x=2L}{x\left(1-\cos \left(\frac{n\pi x}{L} \right) \right) dx}

 

W_{nn} =\frac{e\left|E\right| }{2L}\left[\frac{x^{2} }{2} \right]^{x=2L}_{x=0} =e\left|E\right| L

which is the linear  Stark  effect. The energy-level shift for an electric field \left|E\right| =10^{5} Vcm^{-1} in the x direction across a well of width 2L = 10 nm is

\Delta E=10^{7} \times 5\times 10^{-9} =50  me V

At temperature T = 300  K and \Delta E\gt k_{B} T=25,  meV which indicates that the Stark effect produces a large-enough change in energy eigenvalue to be of potential use in a room-temperature device.

(c) The new energy levels to second order are found using

E_{n} =E^{(0)}_{n} +E^{(1)}_{n} +E^{(2)}_{n}

where E^{(1)}_{k} = W_{kk} and E^{(2)}_{k}=\sum\limits_{j\neq k}{W_{kj}W_{jk} /(E^{(0)}_{k}-E^{(0)}_{j}) }.

The second-order matrix elements are the off-diagonal terms

W_{kj} =\left\langle k\left|\hat{W} \right|j \right\rangle =\left\langle k\left|e\right|E\left|\hat{x} \right| j \right\rangle =\frac{e\left|E\right| }{L}\int\limits_{x=0}^{x=2L}{x\sin \left(\frac{k\pi x}{2L} \right) \sin \left(\frac{j\pi x}{2L} \right)dx }

Using the relation 2 sin(x) sin(y) = cos(x − y) − cos(x + y) with x = kπx/2L and y = jπx/2L allows us to rewrite the integrand, giving

W_{kj} =\frac{e\left|E\right| }{2L} \int\limits_{x=0}^{x=2L}{x\left(\cos \left(\frac{(k-j)\pi x}{2L} \right) -\cos \left(\frac{(k+j)\pi x}{2L} \right) \right) dx}

For (k±j) odd we integrate by parts, using UV^{\prime } dx=UV-\int{U^{\prime }Vdx } with U=x and V^{\prime } =\cos ((k\neq j)\pi x/2L). This gives

W_{kj} =\frac{e\left|E\right| }{2L} \left(\frac{4L^{2}(\cos ((k-j)\pi )-1) }{\pi ^{2}(k-j)^{2} }-\frac{4L^{2}(\cos ((k+j)\pi )-1) }{\pi ^{2} (k+j)^{2} } \right)

 

W_{kj} =\frac{-4e\left|E\right|L}{\pi ^{2} } \left(\frac{1}{(k+j)^{2} }-\frac{1}{(k-j)^{2} } \right)= \frac{-16eE_{x}L }{\pi ^{2} } \frac{kj}{(k^{2}-j^{2} )^{2} }

For (k±j) even, symmetry requires that

W_{kj} =0

So, the perturbing potential only mixes states of different parity.

Related Answered Questions