The uniform five storey shear frame with rigid beams shown in Fig. 18.4 is subjected to ground acceleration. All the floor masses are m and all stories have same height and stiffness k. Assume the displacement to increase linearly with height above base; formulate the equation of motion for the system and determine natural frequency.
1. Determine general properties
\tilde{k}=\Sigma ~k_j~\left(\psi_j-\psi_{j-1}\right)^2
=k\left(\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}\right)
=\frac{k}{5}
m=\sum ~m_j ~\psi_j^2
= m ~\frac{(1~+~4~+~9~+~16~+~25)}{25}=\frac{11}{5} ~m
\bar{L}=\Sigma~ m_i \psi_i=\frac{m}{5}(1+2+3+4+5)=3~ m
2. Formulate equation of motion
\frac{11}{5}~ m \ddot{z}+\frac{k}{5}~ z=-3 ~m \ddot{u}_g
\ddot{Z}+\frac{k}{11 ~m} ~Z=\frac{-15}{11} ~\ddot{u}_g
\omega_n=0.302 ~\sqrt{\frac{k}{m}}
The above is 6% higher than actual = 0.28 \sqrt{\frac{k}{m}}.