Use the Arrhenius equation to determine E\pmb{_{a}}.
For the gas phase decomposition of ethyl chloroformate, the rate constant is 1.05 × 10^{-3} s^{-1} at 470 K and 1.11 × 10^{-2} s^{-1} at 508 K.
ClCOOC_{2}H_{5}(g) → C_{2}H_{5}Cl(g) + CO_{2}(g)
Calculate the activation energy for this reaction.
You are asked to determine the activation energy for a reaction.
You are given the rate constants for the reaction at two different temperatures.
First, create a table of the known and unknown variables.
T_{1} = 470 K T_{2} = 508 K
k_{1} = 1.05 × 10^{-3} s^{-1} k_{2} = 1.11 × 10^{-2} s^{-1}
E_{a} = ?
Next, use the two-point version of the Arrhenius equation (Equation 14.8). The gas constant can be expressed in units of kJ/K · mol.
ln\frac{k_{2}}{k_{1}} = \frac{-E_{a}}{R} = \left(\frac{1}{T_{2}}-\frac{1}{T_{1}} \right)
ln\left(\frac{1.11 \times 10^{-2}\text{ s}^{-1}}{1.05 \times 10^{-3}\text{ s}^{-1}} \right) = \frac{-E_{a}}{8.3145 \times 10^{-3} \text{ kJ/K} \cdot \text{mol}} \left(\frac{1}{508 \text{ K} } -\frac{1}{470 \text{ K}} \right)
2.358 = \frac{-E_{a}}{8.3145 \times 10^{-3} \text{ kJ/K} \cdot \text{mol}} \left(-1.59\times 10^{-4}\text{ K}^{-1}\right)
E_{a} = 123 kJ/mol