Question 7.7: Using the schema of Example E.7.1, Fig. E.7.1, find the foll......

Using the schema of Example E.7.1, Fig. E.7.1, find the following:
(a) Make a classification of the flows in F, P and L for each component.
(b) Construct the matrices A_{F}, A_{P} and A_{L}.
(c) Draw the installation functional diagram.
(d) Construct the installation matrices a_{F}, a_{P} and a_{L} at its maximum level of aggregation.

لقطة الشاشة 2023-06-16 020455
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Table E.7.5 shows the flows classification in F, P and L for each component.

(b) The matrices A_{F}, A_{P} and A_{L} are shown in Table E.7.6, Tables E.7.7 and E.7.8 respectively.

(c) In the functional diagram, the fuel and product are represented for each unit. For this pur-pose, virtual components are incorporated that represent the junctions and bifurcations (rhombuses and circumferences), see Fig. E.7.9. In this way, the installation productive structure is defined.

We can identify at a glance, therefore, where the fuel and the product of each component come from and where they go. This diagram also allows us to immediately locate the effect of the flows exchanged (from and to) with the outside, key information for a global study of the plant. The external inputs correspond to the fuel and solar ra-diation in the generating equipment, the storage of the tanks and the returns of the heat-ing and DHW demands.
(d) For the installation at its maximum level of aggregation, we refer again to Fig. E.7.2 and draw up the following Table E.7.9.

From Table E.7.9 we construct the matrices a_{F}, a_{P} and a_{L}, see Table E.7.10 in which only the columns with values different to zero have been drawn.

Table E.7.5 Classification of flows in F, P and L.

Fuel Product Losses
\dot{B}_{21} {\dot{B}}_{1}\,-{\dot{B}}_{2} \dot{B}_{25}
\dot{B}_{22} {\dot{B}}_{7}\,-{\dot{B}}_{8} _
{\dot{B}}_{1}\,-{\dot{B}}_{2} (\dot{B}_{3}\,-\dot{B}_{4})\,+(\dot{B}_{5}\,-\dot{B}_{6}) _
{\dot{B}}_{5}\,-{\dot{B}}_{6} {\dot{B}}_{9}\,-{\dot{B}}_{10} _
(\dot{B}_{9}\,-\dot{B}_{10})\,+\dot{B}_{23} {\dot{B}}_{15}-{\dot{B}}_{16}\ -{\dot{B}}_{19} _
(\dot{B}_{7}\,-\dot{B}_{8})\,+\dot{B}_{24} {\dot{B}}_{19}\,-{\dot{B}}_{20} _
{\dot{B}}_{3}\,-{\dot{B}}_{4} {\left[\begin{array}{l}{({\dot{B}}_{11}~-{\dot{B}}_{13})~+({\dot{B}}_{12}~-{\dot{B}}_{14})}\end{array}\right]} _
{\dot{B}}_{15}\,-{\dot{B}}_{16} {\dot{B}}_{17}\,-{\dot{B}}_{18} _

 

Table E.7.6 Matrix A_{F}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A_F = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _
1 -1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ 1 -1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ 1 -1 _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _
_ _ _ _ _ _ 1 -1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _
_ _ 1 -1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 _ _ _ _ _ _ _ _ _

Table E.7.7 Matrix A_{P}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A_P= 1 -1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ 1 -1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ 1 -1 1 -1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ 1 -1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 _ _ -1 _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ 1 1 -1 -1 _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 -1 _ _ _ _ _ _ _

Table E.7.8 Matrix A_{L}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A_L= _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Table E.7.9 F, P and L at the maximum level of aggregation.

\mathrm{Fuel}_{\mathrm{T}} \mathrm{Product}_{\mathrm{T}} \mathrm{Losses}_{\mathrm{T}}
\dot{B}_{21}+\dot{B}_{22}+\Delta\dot{B}_{23}+\Delta\dot{B}_{24} \left({\dot{B}}_{11}\,-\,{\dot{B}}_{13}\right)\,+\,\left({\dot{B}}_{12}\,-\,{\dot{B}}_{14}\right){}{+}\left(\dot{B}_{17}\stackrel{}{-}\dot{B}_{18}\stackrel{}{-}\dot{B}_{20}\right) \dot{B}_{25}

Table E.7.10 Matrices a_{F}, a_{P}, a_{L} at the maximum level of aggregation.

21 22 23 24 11 12 13 14 17 18 20 25
a_{F(1,12)}= T 1 1 1 1 _ _ _ _ _ _ _ _
21 22 23 24 11 12 13 14 17 18 20 25
a_{P(1,12)}= T _ _ _ _ 1 1 -1 -1 1 -1 -1 _
21 22 23 24 11 12 13 14 17 18 20 25
a_{L(1,12)}= T _ _ _ _ _ _ _ _ _ _ _ 1

 

لقطة الشاشة 2023-07-07 223229
لقطة الشاشة 2023-07-07 223303
لقطة الشاشة 2023-07-07 223338

Related Answered Questions