Question 10.21: A cantilever beam with circular section of radius r and leng...
A cantilever beam with circular section of radius r and length L is subjected to a concentrated load P at its free end. Estimate its total strain energy.
Learn more on how we answer questions.
From Eq. (10.17), we get strain energy due to shear is
U_i=\int_0^{L_i} \frac{P^2}{2( AE )_i} d x ; \quad 1 \leq i \leq 3 (10.17)
U=\underset{\sout{V}}{\iiint} \frac{\tau^2}{2 G} d \sout{V} ; \quad \text { where } \tau=\frac{V Q}{b I} (1)
Referring to Figure 10.39, we can find τ as follows:
Therefore,
\tau=\left\lgroup\frac{V}{I} \right\rgroup \frac{Q}{2 \sqrt{r^2-y^2}}
where Q=\int_y^r 2 \sqrt{r^2-y^2} y d y \quad \text { and } \quad b=2 \sqrt{r^2-y^2}
that is, Q=-\int_y^r \sqrt{r^2-y^2}(-2 y) d y=-\frac{2}{3}\left[\left(r^2-y^2\right)\right]_y^{3 r / 2}
or Q=\frac{2}{3}\left(r^2-y^2\right)^{3 / 2}
Therefore,
\tau=\left\lgroup \frac{V}{I} \right\rgroup \frac{(2 / 3)\left(r^2-y^2\right)^{3 / 2}}{2\left(r^2-y^2\right)^{1 / 2}}=\left\lgroup \frac{V}{3 I} \right\rgroup\left(r^2-y^2\right)
From Eq. (1),
U=\int_0^L\left\lgroup \underset{A}{\iint} \frac{\tau^2}{2 G} d A \right\rgroup d x=\int_0^L\left\lgroup\frac{V^2}{9 I^2} \int_{-r}^{+r} \frac{1}{2 G}\left(r^2-y^2\right)^2(2)\left(r^2-y^2\right)^{1 / 2} d y \right\rgroup d x
=\left\lgroup \frac{V^2 L}{9 G I^2} \right\rgroup_{-r}^{+r}\left(r^2-y^2\right)^{5 / 2} d y
Therefore,
U=\frac{2}{9}\left\lgroup \frac{V^2 L}{G I^2} \right\rgroup_0^r\left(r^2-y^2\right)^{5 / 2} d y (2)
Let A=\int_0^r\left(r^2-y^2\right)^{5 / 2} d y
Putting y = r sinθ ⇒ dy = r cosθ
A=\int_0^{\pi / 2} r^6 \cos ^6 d \theta=r^6 \int_0^{\pi / 2} \sin ^6 \theta d \theta
or 2 A=r^6 \int_0^{\pi / 2}\left(\sin ^6 \theta+\cos ^6 \theta\right) d \theta
=r^6 \int_0^{\pi / 2}\left\lgroup 1-\frac{3}{4} \sin ^2 2 \theta \right\rgroup d \theta
=r^6 \int_0^{\pi / 2}\left\lgroup 1-\frac{3}{8}\{1-\cos 4 \theta\} \right\rgroup d \theta
=r^6 \int_0^{\pi / 2}\left\lgroup\frac{5}{8}+\frac{3}{8} \cos 4 \theta \right\rgroup d \theta=\frac{5 \pi r^6}{16}
Thus,
A=\int_0^r\left(r^2-y^2\right)^{5 / 2} d y=\frac{5 \pi r^6}{32}
From Eq. (2), we get
U=\frac{2}{9} \frac{V^2 L}{G I^2} \times \frac{5 \pi r^6}{32}
=\frac{5}{(9)(16)} \pi r^6 \frac{V^2 L}{G} \frac{16}{\pi^2 r^8}=\frac{5}{9} \frac{V^2 L}{G A}
=\frac{10}{9}\left\lgroup \frac{V^2}{A^2} \right\rgroup\left\lgroup \frac{1}{2 G} \right\rgroup (A L)
\text { If } V / A=\tau_{\text {avg }} is average shear stress, then
U=\left\lgroup \frac{10}{9} \right\rgroup \tau_{\text {avg }}^2 \frac{A L}{2 G}
Hence, energy shape factor λ for circular beam section is 10/9.
