Question 10.3: A conical rod of length L and circular cross-section as show...
A conical rod of length L and circular cross-section as shown in Figure 10.19 is subjected to a perfectly centric axial load P. Calculate its strain energy. Assume linear elastic behaviour of the rod.

Learn more on how we answer questions.
We position our x-coordinate as shown in Figure 10.19 itself and assume the diameter at that location to be d(x). Clearly,
\frac{d(x)-d_1}{d_2-d_1}=\frac{x}{L}
or d(x)=d_1+\left(d_2-d_1\right) \frac{x}{L} (1)
Now let us take free-body diagram of the portion of the rod whose length is x as shown in Figure 10.19. Now
\sigma_{x x}=\frac{P}{A(x)}, \quad \text { where } A(x)=\frac{\pi d^2(x)}{4} (2)
But, d \tilde{u}=\sigma_{x x} d ∈_{x x} for uniaxial stress case and ∈_{x x}=\sigma_{x x} / E as the material is Hookean. So
d \tilde{u}=\frac{\sigma_{x x} d \sigma_{x x}}{E}
Assuming \tilde{u}=0 \text { when } \sigma_{x x}=0 and integrating above, we get
\tilde{u}=\frac{\sigma_{x x}^2}{2 E}=\left\lgroup\frac{P^2}{2 E} \right\rgroup\left\{\frac{1}{A(x)}\right\}^2 (3)
Hence,
U=\underset{\sout{V}}{\iiint} \tilde{u} d \sout{V} =\int_0^L \tilde{u} A(x) d x
Putting \tilde{u} from Eq. (3), we get
U=\int_0^L\left\lgroup\frac{P^2}{2 E} \right\rgroup \frac{ d x}{A(x)}
=\int_0^L\left\lgroup \frac{P^2}{2 E} \right\rgroup\left\lgroup \frac{4}{\pi} \right\rgroup \frac{ d x}{\left[d_1+\left\lgroup \frac{d_2-d_1}{L} \right\rgroup x\right]^2}
=\left\lgroup\frac{2 P^2}{\pi E}\right\rgroup\left\lgroup\frac{L}{d_2-d_1}\right\rgroup\left[-\frac{1}{d_1+\left\lgroup\frac{d_2-d_1}{L}\right\rgroup x}\right]_0^L
=\frac{2 P^2}{\pi E} \cdot \frac{L}{d_2-d_1}\left\lgroup -\frac{1}{d_2}+\frac{1}{d_1}\right\rgroup
or U=\frac{2 P^2}{\pi E} \frac{L}{d_1 d_2}