Question p.6.13: A constant strain triangular element has corners 1(0,0), 2(4...

A constant strain triangular element has corners 1(0,0), 2(4,0) and 3(2,2) and is 1 unit thick. If the elasticity matrix [D] has elements D_{11}=D_{22}=a, D_{12}=D_1=b, \mathrm{D}_{13}=D_{23}=D_{31}=D_{32}=0 \text { and } \mathrm{D}_{33}=c derive the stiffness matrix for the element.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assume displacement functions

\begin{aligned}&u(x, y)=\alpha_1+\alpha_2 x+\alpha_3 y \\&v(x, y)=\alpha_4+\alpha_5 x+\alpha_6 y\end{aligned}

Then

\begin{aligned}&u_1=\alpha_1 \\&u_2=\alpha_1+4 \alpha_2 \\&u_3=\alpha_1+2 \alpha_2+2 \alpha_3\end{aligned}

Solving

\alpha_2=\frac{u_2-u_1}{4} \quad \alpha_3=\frac{2 u_3-u_1-u_2}{4}

Therefore

u=u_1+\left(\frac{u_2-u_1}{4}\right) x+\left(\frac{2 u_3-u_1-u_2}{4}\right) y

or

u=\left(1-\frac{x}{4}-\frac{y}{4}\right) u_1+\left(\frac{x}{4}-\frac{y}{4}\right) u_2+\frac{y}{2} u_3

Similarly

v=\left(1-\frac{x}{4}-\frac{y}{4}\right) v_1+\left(\frac{x}{4}-\frac{y}{4}\right) v_2+\frac{y}{2} v_3

Then, from Eqs (1.18) and (1.20)

\left.\begin{array}{rl}\varepsilon_x & =\frac{\partial u}{\partial x} \\\varepsilon_y & =\frac{\partial v}{\partial y} \\\varepsilon_z & =\frac{\partial w}{\partial z}\end{array}\right\}  (1.18)

\left.\begin{array}{l}\gamma_{x z}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z} \\\gamma_{x y}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \\\gamma_{y z}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\end{array}\right\} (1.20)

\begin{aligned}\varepsilon_x &=\frac{\partial u}{\partial x}=-\frac{u_1}{4}+\frac{u_2}{4} \\\varepsilon_y &=\frac{\partial v}{\partial y}=-\frac{v_1}{4}-\frac{v_2}{4}+\frac{v_3}{2} \\\gamma_{x y} &=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=-\frac{u_1}{4}-\frac{u_2}{4}-\frac{v_1}{4}+\frac{v_2}{4}\end{aligned}

Hence

[B]\left\{\delta^e\right\}=\left[\begin{array}{c}\frac{\partial u}{\partial x} \\\frac{\partial v}{\partial y} \\\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\end{array}\right]=\frac{1}{4}\left[\begin{array}{rrrrrc}-1 & 0 & 1 & 0 & 0 & 0 \\0 & -1 & 0 & -1 & 0 & 2 \\-1 & -1 & -1 & 1 & 2 & 0\end{array}\right]\left\{\begin{array}{l}u_1 \\v_1 \\u_2 \\v_2 \\u_3 \\v_3\end{array}\right\}

But

[D]=\left[\begin{array}{lll}a & b & 0 \\b & a & 0 \\0 & 0 & c\end{array}\right]

so that

[D][B]=\frac{1}{4}\left[\begin{array}{rrrrrr}-a & -b & a & -b & 0 & 2 b \\-b & -a & b & -a & 0 & 2 a \\-c & -c & -c & c & 2 c & 0\end{array}\right]

and

[B]^{\mathrm{T}}[D][B]=\frac{1}{16}\left[\begin{array}{cccccc}a+c & b+c & -a+c & b-c & -2 c & -2 b \\b+c & a+c & -b+c & a-c & -2 c & -2 a \\-a+c & -b+c & a+c & -b-c & -2 c & 2 b \\b-c & a-c & -b-c & a+c & 2 c & -2 a \\-2 c & -2 c & -2 c & 2 c & 4 c & 0 \\-2 b & -2 a & 2 b & -2 a & 0 & 4 a\end{array}\right]

 

\text { Since }\left[K^e\right]=[B]^{\mathrm{T}}[D][B] \times 4 \times 1

 

\left[K^e\right]=\frac{1}{4}\left[\begin{array}{cccccc}a+c & & & & & \text { SYM } \\b+c & a+c & & & & \\-a+c & -b+c & a+c & & & \\b-c & a-c & -b-c & a+c & & \\-2 c & -2 c & -2 c & 2 c & 4 c & \\-2 b & -2 a & 2 b & -2 a & 0 & 4 a\end{array}\right]

Related Answered Questions