Holooly Rewards

We are determined to provide the latest solutions related to all subjects FREE of charge!

Please sign up to our reward program to support us in return and take advantage of the incredible listed offers.

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

Holooly Ads. Manager

Advertise your business, and reach millions of students around the world.

Holooly Tables

All the data tables that you may search for.

Holooly Arabia

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Holooly Sources

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

Holooly Help Desk

Need Help? We got you covered.

Chapter 4

Q. 4.4

(a) Derive expressions for the hoop and radial stresses developed in a solid disc of radius R when subjected to a thermal gradient of the form T = Kr. Hence determine the position and magnitude of the maximum stresses set up in a steel disc of 150 mm diameter when the temperature rise is 150°C. For steel, α = 12 × 10^{-6} per °C and E = 206.8 GN/m².

(b) How would the values be changed if the temperature at the centre of the disc was increased to 30°C, the temperature rise across the disc maintained at 150°C and the thermal gradient now taking the form T = a + br?


Verified Solution

(a) The hoop and radial stresses are given by eqns. (4.29) and (4.30) as follows:

\sigma_{r}=A-\frac{B}{r^{2}}-\frac{E a}{r^{2}} \int T r d r               (4.29)

\sigma_{H}=A+\frac{B}{r^{2}}+\frac{E a}{r^{2}} \int T r d r-E a T                   (4.30)

\sigma _{r}=A-\frac{B}{r^{2}} -\frac{\alpha E}{r^{2}}\int{Trdr}                (1)
\sigma _{H}=A+\frac{B}{r^{2}}+ \frac{\alpha E}{r^{2}}\int{Trdr}-\alpha ET           (2)
In this case \int{Trdr}=K\int{r^{2}dr}=\frac{Kr^{3}}{3}

the constant of integration being incorporated into the general constant A.

∴         \sigma _{r}=A-\frac{B}{r^{2}} -\frac{\alpha E Kr}{3}    (3)

\sigma _{H}=A+\frac{B}{r^{2}}+\frac{\alpha E Kr}{3}-\alpha EKr    (4)

Now in order that the stresses at the centre of the disc, where r = 0, shall not be infinite, B must be zero and hence B/r² is zero. Also σ_{r} = 0 at r = R.
Therefore substituting in (3),

0=A-\frac{\alpha EKR}{3} \text{ and} A=\frac{\alpha EKR}{3}

Substituting in (3) and (4) and rearranging,

\sigma _{r}=\frac{\alpha E K}{3} (R-r)
\sigma _{H}=\frac{\alpha E K}{3} (R-2r)

The variation of both stresses with radius is linear and they will both have maximum values at the centre where r = 0.

\sigma _{r_{max}}=\sigma _{H_{max}}=\frac{\alpha E KR}{3}
=\frac{12\times 10^{-6}\times 206.8\times 10^{9}\times K\times 0.075}{3}

Now  T = Kr and T must therefore be zero at the centre of the disc where r is zero. Thus, with a known temperature rise of 150°C, it follows that the temperature at the outside radius must be 150°C

∴       150=K\times 0.075
∴       K=2000^{\circ} /m

i.e.   \sigma _{r_{max}}=\sigma _{H_{max}}=\frac{12\times 10^{-6}\times 206.8\times 10^{9}\times 2000\times 0.075}{3}
=124   MN/m^{2}

(b) With the modified form of temperature gradient

\int{Tr dr} =\int{(a+br)rdr} =\int{(ar+br^{2})dr}

Substituting in (1) and (2),

\sigma _{r}=A-\frac{B}{r^{2}}-\frac{\alpha E}{r^{2}}[\frac{ar^{2}}{2}+\frac{br^{3}}{3} ]              (5)

\sigma _{H}=A+\frac{B}{r^{2}}+\frac{\alpha E}{r^{2}}[\frac{ar^{2}}{2}+\frac{br^{3}}{3} ]-\alpha ET      (6)
Now  T=a+br

Therefore at the inside of the disc where r = 0 and T = 30°C,

30=a+b(0)             (7)
and     a=30

At the outside of the disc where T = 180°C,

180=a+b(0.075)                      (8)
(8) – (7)           150=0.075b    ∴    b=2000

Substituting in (5) and (6) and simplifying,

\sigma _{r}=A-\frac{B}{r^{2}}-\alpha E(15+667r)   (9)

\sigma _{H}=A+\frac{B}{r^{2}}+\alpha E(15+667r)-\alpha ET      (10)

Now for finite stresses at the centre,


Also, at r = 0.075,      \sigma _{r}=0  and  T=180 °C

Therefore substituting in (9),

0=A-12\times 10^{-6}\times 206.8\times 10^{9}(15+667\times 0.075)
0=A-12\times 206.8\times 10^{3}\times 65
∴     A=161.5\times 10^{6}

From (9) and (10) the maximum stresses will again be at the centre where r = 0,

i.e.    \sigma _{r_{max}}=\sigma _{H_{max}}=A-\alpha ET=124   MN/m^{2} , as before.

N.B. The same answers would be obtained for any linear gradient with a temperature difference of 150°C. Thus a solution could be obtained with the procedure of part (a) using the form of distribution T = Kr with the value of T at the outside taken to be 150°C (the value at r = 0 being automatically zero).