Question 10.5: (a) Find the peak-to-peak amplitude and frequency of the saw...
(a) Find the peak-to-peak amplitude and frequency of the sawtooth output in Figure 10–32 . Assume that the forward PUT voltage, V_{\mathrm{F} } , is approximately 1 V.
(b) Sketch the output waveform.

Learn more on how we answer questions.
(a) First, find the gate voltage in order to establish the approximate voltage at which the PUT turns on.
V_{\mathrm{G}}=\frac{R_4}{R_3+R_4}(+V)=\frac{10 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}(+15 \mathrm{~V})=7.5 \mathrm{~V}
This voltage sets the approximate maximum peak value of the sawtooth output (neglecting the 0.7 V).
V_{\mathrm{P}} \cong 7.5 \mathrm{~V}
The minimum peak value (low point) is
V_{\mathrm{F}} \cong 1 \mathrm{~V}
So the peak-to-peak amplitude is
V_{p p}=V_{\mathrm{P}}-V_{\mathrm{F}}=7.5 \mathrm{~V}-1 \mathrm{~V}=6.5 \mathrm{~V}
The frequency is determined as follows:
V_{\mathrm{IN}}=\frac{R_2}{R_1+R_2}(-V)=\frac{10 \mathrm{k} \Omega}{78 \mathrm{k} \Omega}(-15 \mathrm{~V})=-1.92 \mathrm{~V}
f=\frac{\left|V_{\mathrm{IN}}\right|}{R_i C}\left(\frac{1}{V_{\mathrm{P}}-V_{\mathrm{F}}}\right)=\left(\frac{1.92 \mathrm{~V}}{(100 \mathrm{k} \Omega)(0.005 \mu \mathrm{F})}\right)\left(\frac{1}{7.5 \mathrm{~V}-1 \mathrm{~V}}\right) \cong \mathbf{5 9 1 ~ H z}
(b) The output waveform is shown in Figure 10–33 . The period is
T=\frac{1}{f}=\frac{1}{591 \mathrm{~Hz}}=1.69 \mathrm{~ms}
P R A C T I C E EXERCISE
If R_i is changed to 56 kΩ in Figure 10–32 , what is the frequency?