Question p.6.11: A square element 1234, whose corners have coordinates x, y (...

A square element 1234, whose corners have coordinates x, y (in metres) of
(−1, −1), (1, −1), (1, 1), and (−1, 1), respectively, was used in a plane stress finite element analysis. The following nodal displacements (mm) were obtained:

\begin{array}{llll}u_1=0.1 & u_2=0.3 & u_3=0.6 & u_4=0.1 \\v_1=0.1 & v_2=0.3 & v_3=0.7 & v_4=0.5\end{array}

If Young’s modulus E = 200 000 N/mm² and Poisson’s ratio ν = 0.3, calculate the stresses at the centre of the element.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From the first of Eqs (6.96)

\left.\begin{array}{l}u(x, y)=\alpha_1+\alpha_2 x+\alpha_3 y+\alpha_4 x y \\v(x, y)=\alpha_5+\alpha_6 x+\alpha_7 y+\alpha_8 x y\end{array}\right\}  (6.96)

\begin{aligned}&u_1=\alpha_1-\alpha_2-\alpha_3+\alpha_4=0.1 / 10^3  (i) \\&u_2=\alpha_1+\alpha_2-\alpha_3-\alpha_4=0.3 / 10^3  (ii) \\&u_3=\alpha_1+\alpha_2+\alpha_3+\alpha_4=0.6 / 10^3  (iii) \\&u_4=\alpha_1-\alpha_2+\alpha_3-\alpha_4=0.1 / 10^3  (iv)\end{aligned}

Adding Eqs (i) and (ii)

u_1+u_2=2 \alpha_1-2 \alpha_3=0.4 / 10^3

i.e.

\alpha_1-\alpha_3-0.2 / 10^3 (v)

Adding Eqs (iii) and (iv)

u_3+u_4=2 \alpha_1+2 \alpha_3=0.7 / 10^3

i.e.

\alpha_1+\alpha_3=0.35 / 10^3  (vi)

Adding Eqs (v) and (vi)

\alpha_1=0.275 / 10^3

Then from Eq. (v)
\alpha_3=0.075 / 10^3
Now subtracting Eq. (ii) from Eq. (i)

u_1-u_2=-2 \alpha_2+2 \alpha_4=-0.2 / 10^3

i.e.
\alpha_2-\alpha_4=0.1 / 10^3 (vii)
Subtracting Eq. (iv) from Eq. (iii)
u_3-u_4=2 \alpha_2+2 \alpha_4=0.5 / 10^3

i.e.
\alpha_2+\alpha_4=0.25 / 10^3 (viii)
Now adding Eqs (vii) and (viii)
2 \alpha_2=0.35 / 10^3
whence
\alpha_2=0.175 / 10^3
Then from Eq. (vii)
\alpha_4=0.075 / 10^3

From the second of Eqs (6.96)

\begin{aligned}&v_1=\alpha_5-\alpha_6-\alpha_7+\alpha_8=0.1 / 10^3  (ix) \\&v_2=\alpha_5+\alpha_6-\alpha_7-\alpha_8=0.3 / 10^3  (x)\\&v_3=\alpha_5+\alpha_6+\alpha_7+\alpha_8=0.7 / 10^3  (xi) \\&v_4=\alpha_5-\alpha_6+\alpha_7-\alpha_8=0.5 / 10^3  (xii)\end{aligned}

Then, in a similar manner to the above

\begin{aligned}&\alpha_5=0.4 / 10^3 \\&\alpha_7=0.2 / 10^3 \\&\alpha_6=0.1 / 10^3 \\&\alpha_8=0\end{aligned}

Eqs (6.96) are now written

\begin{aligned}&u_i-(0.275+0.175 x+0.075 y+0.075 x y) \times 10^{-3} \\&v_i=(0.4+0.1 x+0.2 y) \times 10^{-3}\end{aligned}

Then, from Eqs (6.88)

\varepsilon_x=\frac{\partial u}{\partial x} \quad \varepsilon_y=\frac{\partial v}{\partial y} \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}  (6.88)

\begin{aligned}\varepsilon_x &=(0.175+0.075 y) \times 10^{-3} \\\varepsilon_y &=0.2 \times 10^{-3} \\\gamma_{x y} &=(0.075+0.075 x+0.1) \times 10^{-3}=(0.175+0.075 x) \times 10^{-3}\end{aligned}

At the centre of the element x = y = 0. Then

\begin{aligned}\varepsilon_x &=0.175 \times 10^{-3} \\\varepsilon_y &=0.2 \times 10^{-3} \\\gamma_{x y} &=0.175 \times 10^{-3}\end{aligned}

so that, from Eqs (6.92)

\{\sigma\}=\left\{\begin{array}{l}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\frac{E}{1-v^2}\left[\begin{array}{ccc}1 & v & 0 \\1 & 1 & 0 \\0 & 0 & \frac{1}{2}(1-v)\end{array}\right]\left\{\begin{array}{l}\varepsilon_x \\\varepsilon_y \\\gamma_{x y}\end{array}\right\}  (6.92)

\begin{aligned}\sigma_x &=\frac{200000}{1-0.3^2}(0.175+0.3 \times 0.2) \times 10^{-3}=51.65 \mathrm{~N} / \mathrm{mm}^2 \\\sigma_y &=\frac{200000}{1-0.3^2}(0.2+0.3 \times 0.175) \times 10^{-3}=55.49 \mathrm{~N} / \mathrm{mm}^2 \\\tau_{x y} &=\frac{200000}{2(1+0.3)} \times 0.175 \times 10^{-3}=13.46 \mathrm{~N} / \mathrm{mm}^2\end{aligned}

Related Answered Questions