Question 11.5: A steel column is constructed from a W 10 × 60 wide-flange s...

A steel column is constructed from a W 10 × 60 wide-flange section (Fig. 11-37). Assume that the column has pin supports and may buckle in any direction. Also, assume that the steel has modulus of elasticity E = 29,000 ksi and yield stress σY\sigma_{Y} = 36 ksi.
(a) If the length of the column is L = 20 ft, what is the allowable axial load?
(b) If the column is subjected to an axial load P = 200 k, what is the maximum permissible length?

11.37
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We will use the AISC formulas (Eqs. 11-79 through 11-82) when analyzing this column. Since the column has pin supports, the effective-length factor K = 1. Also, since the column will buckle about the weak axis of bending, we will use the smaller radius of gyration:

n1=53+3(KL/r)8(KL/r)c(KL/r)38(KL/r)c3         KLr(KLr)cn_{1}=\frac{5}{3}+\frac{3(KL/r)}{8(KL/r)_{c}}-\frac{(KL/r)^{3}}{8(KL/r)^{3}_{c}}                  \frac{KL}{r}\leq\left(\frac{KL}{r}\right)_{c}          (11-79)

n2=23121.92    KLr(KLr)c n_2 = \frac{23}{12}≈ 1.92 \ \ \ \ \frac{KL}{r} ≥ \left( \frac{KL}{r} \right)_c        (11-80)

σallowσY=1n1[1(KL/r)22(KL/r)c2]         KLr(KLr)c\frac{\sigma_{allow}}{\sigma_{Y}}=\frac{1}{n_{1}}\left[1-\frac{(KL/r)^{2}}{2(KL/r)^{2}_{c}}\right]                  \frac{KL}{r}\leq\left(\frac{KL}{r}\right)_{c}                (11-81)

σallowσY=(KL/r)c22n2(KL/r)2        KLr(KLr)c\frac{\sigma_{allow}}{\sigma_{Y}}=\frac{(KL/r)^{2}_{c}}{2n_{2}(KL/r)^{2}}                \frac{KL}{r}\geq\left(\frac{KL}{r}\right)_{c}            (11-82)

r = 2.57 in.

as obtained from Table E-1, Appendix E. The critical slenderness ratio (Eq. 11-76) is

(KLr)c=2π2EσY=2π2(29,000 ksi)36 ksi=126.1\left(\frac{KL}{r}\right)_{c}=\sqrt{\frac{2\pi^{2}E}{\sigma_{Y}}}=\sqrt{\frac{2\pi^{2}(29,000  ksi)}{36  ksi}}=126.1                  (a)

(a) Allowable axial load. If the length L = 20 ft, the slenderness ratio of the column is

Lr=(20 ft)(12 in./ft)2.57 in.=93.4\frac{L}{r}=\frac{(20  ft)(12  in./ft)}{2.57  in.}=93.4

which is less than the critical ratio (Eq. a). Therefore, we will use Eqs. (11-79) and (11-81) to obtain the factor of safety and allowable stress, respectively:

n1=53+3(KL/r)8(KL/r)c(KL/r)38(KL/r)c3=53+3(93.4)8(126.1)(93.4)38(126.1)3=1.89n_{1}=\frac{5}{3}+\frac{3(KL/r)}{8(KL/r)_{c}}-\frac{(KL/r)^{3}}{8(KL/r)^{3}_{c}}=\frac{5}{3}+\frac{3(93.4)}{8(126.1)}-\frac{(93.4)^{3}}{8(126.1)^{3}}=1.89

σallowσY=1n1[1(KL/r)22(KL/r)c2]=11.89[1(93.4)22(126.1)2]=0.384\frac{\sigma_{allow}}{\sigma_{Y}}=\frac{1}{n_{1}}\left[1-\frac{(KL/r)^{2}}{2(KL/r)^{2}_{c}}\right]=\frac{1}{1.89}\left[1-\frac{(93.4)^{2}}{2(126.1)^{2}}\right]=0.384

σallow=0.384σY=0.384(36 ksi)=13.8 ksi\sigma_{allow}=0.384\sigma_{Y}=0.384(36  ksi)=13.8  ksi

Since the cross-sectional area of the column is A = 17.6 in.² (from Table E-1), the allowable axial load is

Pallow=σallowA=(13.8 ksi)(17.6 in.2)=243 kP_{allow}=\sigma_{allow}A=(13.8  ksi)(17.6  in.^{2})=243  k

(b) Maximum permissible length. To determine the maximum length when the axial load P = 200 k, we begin with an estimated value of the length and then use a trial-and-error procedure. Note that when the load P = 200 k, the maximum length is greater than 20 ft (because a length of 20 ft corresponds to an axial load of 243 k). Therefore, as a trial value, we will assume L = 25 ft. The corresponding slenderness ratio is

Lr=(25 ft)(12 in./ft)2.57 in.=116.7\frac{L}{r}=\frac{(25  ft)(12  in./ft)}{2.57  in.}=116.7

which is less than the critical ratio. Therefore, we again use Eqs. (11-79) and (11-81) to obtain the factor of safety and allowable stress:

n1=53+3(KL/r)8(KL/r)c(KL/r)38(KL/r)c3=53+3(116.7)8(126.1)(116.7)38(126.1)3=1.915n_{1}=\frac{5}{3}+\frac{3(KL/r)}{8(KL/r)_{c}}-\frac{(KL/r)^{3}}{8(KL/r)^{3}_{c}}=\frac{5}{3}+\frac{3(116.7)}{8(126.1)}-\frac{(116.7)^{3}}{8(126.1)^{3}}=1.915

σallowσY=1n1[1(KL/r)22(KL/r)c2]=11.915[1(116.7)22(126.1)2]=0.299\frac{\sigma_{allow}}{\sigma_{Y}}=\frac{1}{n_{1}}\left[1-\frac{(KL/r)^{2}}{2(KL/r)^{2}_{c}}\right]=\frac{1}{1.915}\left[1-\frac{(116.7)^{2}}{2(126.1)^{2}}\right]= 0.299

σallow=0.299σY=0.299(36 ksi)=10.8 ksi\sigma_{allow}=0.299\sigma_{Y}=0.299(36  ksi)=10.8  ksi

Thus, the allowable axial load corresponding to a length L = 25 ft is

Pallow=σallowA=(10.8 ksi)(17.6 in.²)=190 kP_{allow}=\sigma_{allow}A=(10.8  ksi)(17.6  in.²) = 190  k

which is less than the given load of 200 k. Therefore, the permissible length is less than 25 ft.
Performing similar calculations for L = 24.0 ft and L = 24.5 ft, we obtain the following results:

L = 24.0 ft                PallowP_{allow} = 201 k

L = 24.5 ft              PallowP_{allow} = 194 k

L = 25.0 ft              PallowP_{allow} = 190 k

Interpolating between these results, we see that a load of 200 k corresponds to a length of 24.1 ft. Thus, the maximum permissible length of the column is

Lmax=24.1 ftL_{\max}=24.1  ft

Related Answered Questions