Question 5.23: Air is expanded reversibly and adiabatically in a nozzle fro...

Air is expanded reversibly and adiabatically in a nozzle from 13 bar and 150°C to a pressure of 6 bar. The inlet velocity of the nozzle is very small and the process occurs under steady state flow conditions. Calculate the exit velocity of the nozzle.                                                                                                                                                                                                         (U.P.S.C., 1992)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given : p_{1} = 13 bar ;  T_{1} = 150 + 273 = 423 K ;  p_{2} = 6 bar ;  C_{1} = 0

Exit velocity, C_{2}     :
Applying the energy equation at ‘1’ and ‘2’, we get

m  [h_{1}   +   \frac{ C_{1} ²}{2}   +    Z_{1}  g]   +   Q   =   [h_{2}   +   \frac{ C_{2} ²}{2}   +    Z_{2}  g ]   +    W                                          …(i)

Since the air is expanded reversibly and adiabatically in a nozzle from condition ‘1’ to ‘2’, therefore,

Q = 0 ; Also W = 0 and Z_{1}  = Z_{2}
∴                        Eqn. (i) reduces to :

h_{1}   +   \frac{ C_{1} ²}{2}    =   h_{2}   +   \frac{ C_{2} ²}{2}   

But                                C_{1}      = 0

∴                     C_{2} ²    =   2   (h_{1}   –    h_{2})

or                                          C_{2} =   \sqrt{ 2   (h_{1}   –    h_{2})}    =   \sqrt{ 2    ×    c_{p}   (T_{1}   –    T_{2})}                                                            …(ii)

Now,                    \frac{ T_{2}}{T_{1}}   =   (\frac{ p_{2}}{p_{1}})^{ \frac{ γ  –   1}{γ} }   =   (\frac{ 6}{13})^{ \frac{ 1.4  –   1}{1.4} }  =   0.8018

∴                                            T_{2}  = 423 × 0.8018 = 339.16 K
Substituting the values in eqn. (ii), we get

C_{2} =   \sqrt{  2    ×   1.005  (423   –   339.16) }   =  12.98 m/s.

523

Related Answered Questions