Question 19.3: An A/D converter incorporates a resistor ladder consisting o...

An A/D converter incorporates a resistor ladder consisting of 128 units made of n-well to generate equally-spaced reference voltages (Fig. 19.33). If the two ends of the ladder are connected to V_1=+1 V \text { and } V_2=+2 V , calculate the ratio R_{128} / R_1 .

19.33
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The width of the depletion region inside the n-well is given by x_d=\sqrt{2 \epsilon_{s i}\left(\phi_B+V_R\right) /\left(q N_{w e l l}\right)}, where N_{w e l l} denotes the n-well doping level and V_R the reverse bias voltage. Assuming that the zero-bias depth of the n-well is equal to t_0, we have

\begin{aligned} \frac{R_{128}}{R_1} &=\frac{t_0-\sqrt{\frac{2 \epsilon_{s i}}{q N_{\text {well }}}\left(\phi_B+V_1\right)}+\sqrt{\frac{2 \epsilon_{s i}}{q N_{w e l l}} \phi_B}}{t_0-\sqrt{\frac{2 \epsilon_{s i}}{q N_{\text {well }}}\left(\phi_B+V_2\right)}+\sqrt{\frac{2 \epsilon_{s i}}{q N_{\text {well }}} \phi_B}} &(19.10)\\ &=\frac{t_0+\sqrt{\frac{2 \epsilon_{s i}}{q N_{\text {well }}} \phi_B}\left(1-\sqrt{1+\frac{V_1}{\phi_B}}\right)}{t_0+\sqrt{\frac{2 \epsilon_{s i}}{q N_{\text {well }}} \phi_B}\left(1-\sqrt{1+\frac{V_2}{\phi_B}}\right)}&(19.11) \end{aligned}

If the difference between R_1 \text { and } R_{128} is small, we can divide the numerator and denominator of (19.11) by t0 and approximate the result as

\begin{aligned} \frac{R_{128}}{R_1} & \approx\left[1+\frac{1}{t_0} \sqrt{\frac{2 \epsilon_{s i}}{q N_{\text {well }}} \phi_B}\left(1-\sqrt{1+\frac{V_1}{\phi_B}}\right)\right]\left[1-\frac{1}{t_0} \sqrt{\frac{2 \epsilon_{s i}}{q N_{\text {well }}} \phi_B}\left(1-\sqrt{1+\frac{V_2}{\phi_B}}\right)\right] &(19.12)\\ & \approx 1+\frac{1}{t_0} \sqrt{\frac{2 \epsilon_{s i}}{q N_{\text {well }}} \phi_B}\left(\sqrt{1+\frac{V_2}{\phi_B}}-\sqrt{1+\frac{V_1}{\phi_B}}\right)&(19.13) \end{aligned}

For example, if t_0=2 \mu m , N_{\text {well }}=10^{16} cm ^{-1} \text {, and } \phi_B=0.7 V , the mismatch between R_{128} \text { and } R_1 is nearly 60%.

Related Answered Questions