Question 5.4: An abrupt Si p-n junction (A = 10^-4 cm²) has the following ...

An abrupt Si p-n junction (A = 10^{-4} cm^2) has the following properties at 300 K:

p side                                   n side
\space \\N_a = 10^{17}  cm^{-3}\quad \quad\quad\quad \quad N_d = 10^{15} \\ \space \\ \tau_n = 0.1  \mu s \quad \quad \quad\quad\quad\quad \quad  \tau_p = 10  \mu s \\ \space \\ \mu_p = 200  cm^2 /V – s \quad\quad\quad \quad \mu_n = 1300 \\ \space \\ \mu_n = 700 \quad\quad\quad \quad\quad \quad \quad \quad \mu_p = 450

The junction is forward biased by 0.5 V. What is the forward current?
What is the current at a reverse bias of −0.5 V?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

I=qA\Big(\frac{D_p}{L_p}p_n+\frac{D_n}{L_n}n_p\Big)(e^{qV/kT}-1)=I_0(e^{qV/kT}-1) \\ \space \\ p_n=\frac{n_i^2}{n_n}=\frac{(1.5\times 10^{10})^2}{10^{15}}=2.25\times 10^5 \space cm^{-3}\\ \space \\ n_p=\frac{n_i^2}{p_p}=\frac{(1.5\times 10^{10})^2}{10^{17}}=2.25\times 10^3 \space cm^{-3}

For minority carriers,

D_p=\frac{kT}{q}\mu_p=0.0259\times 450=11.66 \space cm^2/s \space on \space the \space n \space side \\ \space \\ D_n=\frac{kT}{q}\mu_n=0.0259\times 700=18.13 \space cm^2/s \space on \space the \space p \space side \\ \space \\ L_p=\sqrt{D_p\tau_p}=\sqrt{11.66\times 10\times 10^{-6}}=1.08\times 10^{-2} \space cm \\ \space \\ L_n=\sqrt{D_n\tau_n}=\sqrt{18.13\times 0.1\times 10^{-6}}=1.35\times 10^{-3} \space cm \\ \space \\ I_0=qA\Big(\frac{D_p}{L_p}p_n+\frac{D_n}{L_n}n_p\Big)=1.6\times 10^{-19}\times 0.0001\Big(\frac{11.66}{0.0108}2.25\times 10^5+\frac{18.13}{0.00135}2.25 \times 10^3\Big)\\ \space \\ =4.370\times 10^{-15}A\\ \space \\ I=I_0(e^{0.5/0.0259}-1)\approx 1.058\times 10^{-6}A \space in \space forward \space bias. \\ \space \\ I=-I_0=-4.37\times 10^{-15}A \space in \space reverse\space bias.

Related Answered Questions

Question: 5.3

Verified Answer:

The total current is I=qA\left(\frac{D_{p} ...
Question: 5.6

Verified Answer:

C_{j} =\sqrt{\epsilon } A\left[\frac{q}{2\l...