Question 4.5: An initially unstressed short steel cylinder, internal radiu...

An initially unstressed short steel cylinder, internal radius 0.2 m and external radius 0.3 m, is subjected to a temperature distribution of the form T = a + b  log_{e} r to ensure constant heat flow through the cylinder walls. With this form of distribution the radial and circumferential stresses at any radius r , where the temperature is T. are given by

\sigma _{r}=A-\frac{B}{r^{2}} -\frac{\alpha ET}{2(1-\nu )}

\sigma _{H}=A+\frac{B}{r^{2}} -\frac{\alpha ET}{2(1-\nu )}-\frac{ E\alpha b}{2(1-\nu )}

If the temperatures at the inside and outside surfaces are maintained at 200°C and 100°C respectively, determine the maximum circumferential stress set up in the cylinder walls. For steel, E = 207 GN/m², ν = 0.3 and \alpha = 11 × 10^{-6} per °C

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

T=a+b\log _{e}r
200=a+b\log _{e}0.2=a+b(0.6931-2.3026)
∴     200=a-1.6095 b                  (1)
also            100=a+b\log _{e}0.3=a+b(1.0986-2.3026)
100=a-1.204   b                       (2)
(2)-(1),                100=-0.4055   b
b=-246.5=-247
Also                \frac{E\alpha }{2(1-\nu )} =\frac{207\times 10^{9}\times 11\times 10^{-6}}{2(1-0.29)}
=1.6\times 10^{6}

Therefore substituting in the given expression for radial stress

\sigma _{r}=A-\frac{B}{r^{2}} -1.6\times 10^{6}T

At r = 0.3, \sigma _{r} = 0 and T = 100

0=A-\frac{B}{0.09}-1.6 \times 10^{6} \times 100      (3)

At r = 0.2, \sigma _{r} = 0 and T = 200

0=A-\frac{B}{0.04}-1.6\times 10^{6}\times 200    (4)

(4)-(3)     0=B(11.1-25)-1.6\times 10^{8}
B=-11.5\times 10^{6}

and from (4),

A=25B+3.2\times 10^{8}
=(-2.88+3.2)10^{8}=0.32\times 10^{8}

substituting in the given expression for hoop stress,

\sigma _{H}=0.32\times 10^{8}-\frac{11.5\times 10^{6}}{r^{2}} -1.6\times 10^{6}T+1.6\times 10^{6}\times 247

At  r = 0.2, \sigma _{H}=(0.32-2.88-3.2+3.96)10^{8}=-180    MN/m^{2}

At r = 0.3,    \sigma _{H}=(0.32-1.28-1.6+3.96)10^{8}=+140   MN/m^{2}

The maximum tensile circumferential stress therefore occurs at the outside radius and has a value of 140 MN/m². The maximum compressive stress is 180 MN/m² at the inside radius

Related Answered Questions