Question 29.4: Awastewater stream is introduced to the top of a mass-transf...

A wastewater stream is introduced to the top of a mass-transfer tower where it flows countercurrent to an air stream. At one point in the tower, the wastewater stream contains 1 \times 10^{-3} \mathrm{~g} \mathrm{~mol} \mathrm{~A} / \mathrm{m}^{3} and the air is essentially free of any A. At the operating conditions within the tower, the film mass-transfer coefficients are k_{L}=5 \times 10^{-4} \mathrm{~kg} / \mathrm{mol} / \mathrm{m}^{2} \cdot \mathrm{s} \cdot\left(\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}\right) and k_{G}=0.01 \mathrm{~kg} \mathrm{~mol} / \mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{atm}. The concentrations are in the Henry’s law region where p_{A, \mathrm{i}}=H c_{A, \mathrm{i}} with H=10 \mathrm{~atm} /\left(\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}\right). Determine

(a) the overall mass flux of A.

(b) the overall mass-transfer coefficients, K_{L} and K_{G}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

At the specified plane,

c_{A, L}=1.0 \times 10^{-6} \frac{\mathrm{kg} \mathrm{mol} \mathrm{A}}{\mathrm{m}^{3}}

and

p_{A, G}=0

A sketch of the partial pressure of A vs. concentration of A reveals this is a stripping operation. By equation (29-17)

\begin{aligned} \frac{1}{K_{L}} & =\frac{1}{H k_{G}}+\frac{1}{k_{L}} \\ & =\frac{1}{\left(10 \frac{\mathrm{atm}}{\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}\right)\left(0.01 \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{atm}}\right)}+\frac{1}{5 \times 10^{-4} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}} \end{aligned}

K_{L}=4.97 \times 10^{-4} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}

The equilibrium concentrations are

\begin{aligned} c_{A}^{*}=\frac{p_{A, G}}{H} & =\frac{0 \mathrm{~atm}}{10 \frac{\mathrm{atm}}{\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}}=0 \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{3}} \\ p_{A}^{*}=H c_{A, L} & =\left(10 \frac{\mathrm{atm}}{\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}\right)\left(1 \times 10^{-6} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{3}}\right) \\ & =1 \times 10^{-5} \mathrm{~atm} \end{aligned}

The flux of A for this stripping operation is

\begin{aligned} N_{A}=K_{L}\left(c_{A, L}-c_{A}^{*}\right) & =\left(4.97 \times 10^{-4} \frac{\mathrm{m}}{\mathrm{s}}\right)\left(1.0 \times 10^{-6} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{3}}\right) \\ & =4.97 \times 10^{-10} \frac{\mathrm{kg}   \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s}} \end{aligned}

The overall mass-transfer coefficient, K_{G} can be determined in two ways.

\begin{aligned} K_{G}=\frac{N_{A}}{p_{A}^{*}-p_{A, G}} & =\frac{4.97 \times 10^{-10} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s}}}{1 \times 10^{-5} \mathrm{~atm}-0} \\ & =4.97 \times 10^{-5} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{atm}} \end{aligned}

If we multiply both sides of equation (29-17) by Henry’s law constant, H, and relate the results to equation (29-16), we obtain

\frac{H}{K_{L}}=\frac{1}{k_{G}}+\frac{H}{k_{L}}=\frac{1}{K_{G}}

\frac{1}{K_{G}}=\frac{1}{k_{G}}+\frac{m}{k_{L}} (29-16)

then

\begin{aligned} K_{G} & =\frac{K_{L}}{H}=\frac{4.97 \times 10^{-4} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot\left(\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}\right)}}{10 \mathrm{~atm} /\left(\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}\right)} \\ & =4.97 \times 10^{-5} \frac{\mathrm{kg}   \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{atm}} . \end{aligned}

Related Answered Questions