Question 9.9: Calculate the critical heat flux for the conditions of Examp...

Calculate the critical heat flux for the conditions of Example 9.8 assuming that the tube is horizontal rather than vertical.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The factor \gamma_{H} is calculated from Equation (9.100) using fluid properties from Example 9.1.

\gamma_{H}=\left(\frac{G D}{\mu_{L}}\right)\left(\frac{\mu_{L}^{2}}{g_{c} \sigma D \rho_{L}}\right)^{-1.58}\left[\frac{\left(\rho_{L}-\rho_{V}\right) g D^{2}}{g_{c} \sigma}\right]^{-1.05}\left(\frac{\mu_{L}}{\mu_{V}}\right)^{6.41}

 

=\left(\frac{300  \times  0.0212}{156  \times  10^{-6}}\right)\left[\frac{\left(156  \times  10^{-6}\right)^{2}}{1.0  \times  8.2  \times  10^{-3}  \times  0.0212  \times  567}\right]^{-1.58}

 

\times\left[\frac{(567  –  18.09)  \times  9.81(0.0212)^{2}}{1.0  \times  8.2  \times  10^{-3}}\right]^{-1.05}\left(\frac{156  \times  10^{-6}}{7.11  \times  10^{-6}}\right)^{6.41}

 

\gamma_{H}=1.1326  \times  10^{21}

Equation (9.99) is now used to calculate the critical heat flux:

\frac{\hat{q}_{c}}{G \lambda}=575 \gamma_{H}^{-0.34}(L / D)^{-0.511}\left(\frac{\rho_{L}-\rho_{V}}{\rho_{V}}\right)^{1.27}\left(1+\Delta H_{\text {in }} / \lambda\right)^{1.64}

 

=575\left(1.1326  \times  10^{21}\right)^{-0.34}(143.8)^{-0.511}\left(\frac{567  –  18.09}{18.09}\right)^{1.27}(1  +  23,260 / 272,000)^{1.64}

 

\frac{\hat{q}_{c}}{G \lambda}=2.750  \times  10^{-4}

 

\hat{q}_{c}=2.750  \times  10^{-4}  \times  300  \times  272,000 \cong 22,440  W / m ^{2}

This result is much lower than the critical heat flux for vertical flow calculated in Example 9.8, demonstrating that the effect of tube orientation on critical heat flux can be very significant

Related Answered Questions