Question 10.3: Calculate the equilibrium constant based on pressure for the...

Calculate the equilibrium constant based on pressure for the reaction, N_{2} + M \rightleftarrows  N + N + M, at 3000 K.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. (10.64), the equilibrium constant is

K_{p} = \frac{(\pi m_{A})^{{3}/{2}}}{h^{3}P_{\circ}}(kT)^{{5}/{2}}\left(\frac{Z^{2}_{A,int}}{Z_{A_{2},int}}\right)e^{-D_{\circ}/kT}.              (10.64)

K_{p} = \frac{(\pi m_{N})^{{3}/{2}}}{h^{3}P_{\circ}}(kT)^{{5}/{2}}\left(\frac{Z^{2}_{N,int}}{Z_{N_{2},int}}\right)e^{-D_{\circ}/kT}.
Now, from Examples 9.2 and 9.5, the internal contributions to the partition function at 3000 K are

Z_{N,int} = Z_{N,el} = 4.0010

Z_{N_{2},int} = Z_{el}Z^{\circ}_{R-V}Z_{corr} = (1.0000)(778.80) (1.0139) = 789.63.

From Appendix K.1, the dissociation energy for molecular nitrogen is

D_{\circ} = 9.759 eV (1.602 × 10^{-19}J/eV) = 1.5634 × 10^{-18}J.

Hence, we have

\left(\frac{Z^{2}_{N,int}}{Z_{N_{2},int}}\right)e^{-D_{\circ}/kT} = \frac{(4.0010)^{2}}{(789.63)}\exp\left[-\frac{1.5634\times10^{-18}}{(1.3807\times10^{-23})(3000)}\right] = 8.2211\times10^{-19}.

Evaluating the equilibrium constant, we thus obtain

K_{p} = \frac{\left[\pi (14.0067)\left(1.6605\times10^{-27}\right)\right]^{{3}/{2}}}{\left(6.6261\times10^{-34}\right)^{3}(1.0\times 10^{5})}\left[(1.3807\times10^{-23})(3000)\right]^{{5}/{2}}\times\left(8.2211\times10^{-19}\right) = 1.949\times10^{-10}.

Related Answered Questions