Question 9.6: Calculate the void fraction and two-phase density for the re...
Calculate the void fraction and two-phase density for the reboiler return line of Example 9.5 using:
(a) The homogeneous flow model.
(b) The Lockhart–Martinelli correlation.
(c) The Chisholm correlation.
(d) The CISE correlation
Learn more on how we answer questions.
(a) For the homogeneous flow model, the void fraction is given by Equation (9.60):
\epsilon_{V}=\frac{x}{x + (1 – x) \rho_{V} / \rho_{L}}=\frac{0.2}{0.2 + 0.8(0.4787 / 38.94)}
\epsilon_{ V }=0.9531
The two-phase density can be calculated using either Equation (9.54) or (9.51). The latter was used in Example 9.5 to obtain \rho_{ tp } = 2.2813 lbm/ft³. Using Equation (9.54) we obtain
\rho_{tp} = [x/ \rho_{V} + (1 – x)/\rho_{L}]^{-1} (9.51)
\rho_{ tp }=\epsilon_{V} \rho_{V}+\left(1-\epsilon_{V}\right) \rho_{L}=0.9531 \times 0.4787+(1-0.9531) \times 38.94\rho_{t p}=2.2825 \cong 2.28 lbm / ft ^{3}
The difference between the two values of \rho_{t p} is due to round-off error in the value of \epsilon_{V}, and is negligible in the present context.
(b) A value of \phi_{L}^{2} = 43.07 was calculated in Example 9.5, giving \phi_{L}= 6.5628. The void fraction is computed from Equation (9.61):
The two-phase density is calculated using Equation (9.62):
\rho_{t p}=\frac{\rho_{L}+\left(\phi_{L}-1\right) \rho_{V}}{\phi_{L}}=\frac{38.94+(6.5628-1) \times 0.4787}{6.5628}\rho_{ tp }=6.3392 \cong 6.34 lbm / ft ^{3}
(c) From Example 9.5, the Lockhart–Martinelli parameter is X_{ tt} = 0.521 < 1. Therefore, Equation (9.63) gives:
S R=\left(\rho_{L} / \rho_{V}\right)^{0.25}=(38.94 / 0.4787)^{0.25}=3.0032Substitution into Equation (9.59) gives the void fraction:
\epsilon_{V}=\frac{x}{x+S R(1-x) \rho_{V} / \rho_{L}}=\frac{0.2}{0.2+3.0032 \times 0.8 \times 0.4787 / 38.94}\epsilon_{V}=0.8713
The two-phase density is obtained from Equation (9.54).
\rho_{t p}=\epsilon_{V} \rho_{V}+\left(1-\epsilon_{V}\right) \rho_{L}=0.8713 \times 0.4787+(1-0.8713) \times 38.94\rho_{ tp }=5.4287 \cong 5.43 lbm / ft ^{3}
(d) The following values are obtained from Example 9.5:
D_{i}=0.835 ft\sigma=7.812 \times 10^{-4} lbf / ft
G=547,846 lbm / h \cdot ft ^{2}
\operatorname{Re}_{ LO }=1,068,405
The Weber number is calculated as follows:
W e_{L O}=\frac{G^{2} D_{i}}{g_{c} \rho_{L} \sigma}=\frac{(547,846)^{2} \times 0.835}{4.17 \times 10^{8} \times 38.94 \times 7.812 \times 10^{-4}}=19,756The parameters in the CISE correlation are calculated using Equations (9.65) to (9.67). From part (a), the homogeneous void
fraction is \left(\epsilon_{V}\right)_{\text {hom }}= 0.9531.
E_{1}=1.578 R e_{L O}^{-0.19}\left(\rho_{L} / \rho_{V}\right)^{0.22}=1.578(1,068,405)^{-0.19}(38.94 / 0.4787)^{0.22}
E_{1}=0.2973
E_{2}=0.0273 W e_{L O} R e_{L O}^{-0.51}\left(\rho_{L} / \rho_{V}\right)^{-0.08}
=0.0273 \times 19,756(1,068,405)^{-0.51}(38.94 / 0.4787)^{-0.08}
E_{2}=0.3194
The slip ratio is calculated from Equation (9.64):
S R=1+E_{1}\left[\left(\frac{\gamma}{1+\gamma E_{2}}\right)+\gamma E_{2}\right]^{0.5}=1+0.2973\left[\frac{20.322}{1+20.322 \times 0.3194}+20.322 \times 0.3194\right]^{0.5}
SR = 1.9013
The void fraction is calculated using Equation (9.59):
\epsilon_{V}=\frac{x}{x+S R(1-x) \rho_{V} / \rho_{L}}=\frac{0.2}{0.2+1.9013 \times 0.8 \times 0.4787 / 38.94}\epsilon_{V}=0.9145
Finally, the two-phase density is calculated using Equation (9.54).
\rho_{t p}=\epsilon_{V} \rho_{V}+\left(1-\epsilon_{V}\right) \rho_{L}=0.9145 \times 0.4787+(1-0.9145) \times 38.94\rho_{ t p}=3.7671 \cong 3.77 lbm / ft ^{3}
Notice that while the void fractions predicted by the four methods are within about 12% of one another, the two-phase densities differ by large percentages