Question 17.4: Calculating Concentrations of Species in a Solution of a Dip...

Calculating Concentrations of Species in a Solution of a Diprotic Acid

Ascorbic acid (vitamin C) is a diprotic acid, \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6} (Figure 17.5). What is the \mathrm{pH} of a 0.10  \mathrm{M} solution? What is the concentration of ascorbate ion, \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{2-} ? The acid ionization constants are K_{a 1}=7.9 \times 10^{-5} and K_{a 2}=1.6 \times 10^{-12}.

PROBLEM STRATEGY

Diprotic acids have two ionization constants, one for the loss of each proton. To be exact, you should account for both reactions. However, K_{a 2} is so much smaller than K_{a 1} that the smaller amount of hydronium ion produced in the second reaction can be neglected. Follow the three steps for solving equilibrium problems.

Considering only the first ionization, set up a table of concentrations (starting, change, and equilibrium). Substitute these values into the equilibrium equation for K_{a 1}, solve for x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], and then solve for \mathrm{pH} (as in Example 17.2). Ascorbate ion is produced in the second ionization; its concentration, as we show, equals K_{a 2}.

17.5
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

CALCULATION of pH Abbreviate the formula for ascorbic acid as \mathrm{H}_{2} Asc. Hydronium ions are produced by two successive acid ionizations.

\begin{aligned} & \mathrm{H}_{2} \mathrm{Asc}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\operatorname{HAsc}^{-}(a q) ; K_{a 1}=7.9 \times 10^{-5} \\ & \mathrm{HAsc}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\operatorname{Asc}^{2-}(a q) ; K_{a 2}=1.6 \times 10^{-12} \end{aligned}

If you let x be the amount of \mathrm{H}_{3} \mathrm{O}^{+}formed in the first ionization, you get the following results:

\begin{array}{cccc} \text { Concentration }(M) & \mathbf{H}_{2} \mathbf{A s c}(\boldsymbol{a q})+\mathbf{H}_{2} \mathbf{O}(\boldsymbol{l}) & \rightleftharpoons \mathbf{H}_{3} \mathbf{O}^{+}(\boldsymbol{a q})&+\mathbf{H A s c}^{-}(\boldsymbol{a q}) \\ \text { Starting } & 0.10 & \sim 0 & 0 \\ \text { Change } & -x & +x & +x \\ \text { Equilibrium } & 0.10-x & x & x \end{array}

Now substitute into the equilibrium-constant equation for the first ionization.

\begin{aligned} \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HAsc}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{Asc}\right]} & =K_{a 1} \\ \frac{x^{2}}{0.10-x} & =7.9 \times 10^{-5} \end{aligned}

Assuming x to be much smaller than 0.10 , you get

\frac{x^{2}}{0.10} \simeq 7.9 \times 10^{-5}

or

\begin{gathered} x^{2} \simeq 7.9 \times 10^{-5} \times 0.10 \\ x \simeq 2.8 \times 10^{-3}=0.0028 \end{gathered}

(Note that 0.10-x=0.10-0.0028=0.10, correct to two significant figures. Therefore, the assumption that 0.10-x \simeq 0.10 is correct.)

The hydronium-ion concentration is 0.0028 M, so

\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.0028)=\mathbf{2 . 5 5}

ASCORBATE-ION CONCENTRATION Ascorbate ion, \mathrm{Asc}^{2-}, which we will call y, is produced only in the second reaction. Assume the starting concentrations of \mathrm{H}_{3} \mathrm{O}^{+} and \mathrm{HAsc}^{-}for this reaction to be those from the first equilibrium. The amounts of each species in 1 \mathrm{~L} of solution are as follows:

\begin{array}{cccc} \text { Concentration }(M) & \mathbf{H A s c}^{-}(\boldsymbol{a q})+\mathbf{H}_{2} \mathbf{O}(l) & \rightleftharpoons \mathbf{H}_{3} \mathbf{O}^{+}(\boldsymbol{a q}) & +\mathbf{A s c}^{2-}(\boldsymbol{a q}) \\ \text { Starting } & 0.0028 & 0.0028 & 0 \\ \text { Change } & -y & +y & +y \\ \text { Equilibrium } & 0.0028-y & 0.0028+y & y \end{array}

Now substitute into the equilibrium-constant equation for the second ionization.

\begin{aligned} & \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Asc}^{2-}\right]}{\left[\mathrm{HAsc}^{-}\right]}=K_{a 2} \\ & \frac{(0.0028+y) y}{0.0028-y}=1.6 \times 10^{-12} \end{aligned}

This equation can be simplified if you assume that y is much smaller than 0.0028 . (Again, this assumes that the reaction occurs to only a small extent, as you expect from the magnitude of the equilibrium constant.) That is,

\begin{aligned} & 0.0028+y \simeq 0.0028 \\ & 0.0028-y \simeq 0.0028 \end{aligned}

Then the equilibrium equation reads

\frac{(0.0028) y}{0.0028} \simeq 1.6 \times 10^{-12}

Hence,        y \simeq 1.6 \times 10^{-12}

(Note that 1.6 \times 10^{-12} is indeed much smaller than 0.0028 , as you assumed.) The concentration of ascorbate ion equals K_{a 2}, or 1.6 \times 10^{-12} M.

Related Answered Questions