Question 17.5: Calculating Concentrations of Species in a Weak Base Solutio...

Calculating Concentrations of Species in a Weak Base Solution Using K_{b}

Morphine, \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}, is administered medically to relieve pain. It is a naturally occurring base, or alkaloid. What is the \mathrm{pH} of a 0.0075 \mathrm{M} solution of morphine at 25^{\circ} \mathrm{C} ? The base-ionization constant, K_{b}, is 1.6 \times 10^{-6} at 25^{\circ} \mathrm{C}.

PROBLEM STRATEGY

The calculation for the ionization of a weak base parallels that used with weak acids in Examples 17.2 and 17.3: you write the equation, make a table of concentrations (Step 1), set up the equilibrium-constant equation for K_{b} (Step 2), and solve for x= \left[\mathrm{OH}^{-}\right](Step 3). Assume the self-ionization of water can be neglected. You obtain \left[\mathrm{H}_{3} \mathrm{O}^{+}\right], and then the \mathrm{pH}, by solving K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right].

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Morphine, which we abbreviate as Mor, ionizes by picking up a proton from water (as does ammonia).

\operatorname{Mor}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \operatorname{HMor}^{+}(a q)+\mathrm{OH}^{-}(a q)

STEP 1 Summarize the concentrations in a table. For the change values, note that the morphine in 1 \mathrm{~L} of solution ionizes to give x mol HMor ^{+}and x \mathrm{~mol} \mathrm{OH}^{-}.

\begin{array}{cccc} \text { Concentration }(M) & \mathrm{Mor}(\mathrm{aq})+\mathrm{H}_2 \mathrm{O}(l) & \rightleftharpoons \mathrm{HMor}^{+}(\mathrm{aq})&+\mathrm{OH}^{-}(a q) \\ \text { Starting } & 0.0075 & 0 & \sim 0 \\ \text { Change } & -x & +x & +x \\ \text { Equilibrium } & 0.0075-x & x & x \end{array}

STEP 2 Substituting into the equilibrium equation

\frac{\left[\mathrm{HMor}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{Mor}]}=K_{b}

gives

\frac{x^{2}}{0.0075-x}=1.6 \times 10^{-6}

STEP 3 If you assume that x is small enough to neglect compared with 0.0075, you have

0.0075-x \simeq 0.0075

and you can write the equilibrium-constant equation as

\frac{x^{2}}{0.0075} \simeq 1.6 \times 10^{-6}

Hence,

\begin{gathered} x^{2} \simeq 1.6 \times 10^{-6} \times 0.0075=1.2 \times 10^{-8} \\ x=\left[\mathrm{OH}^{-}\right] \simeq 1.1 \times 10^{-4} \end{gathered}

You can now calculate the hydronium-ion concentration. The product of the hydronium-ion concentration and the hydroxide-ion concentration equals 1.0 \times 10^{-14} at 25^{\circ} \mathrm{C} :

\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}

Substituting into this equation gives

\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times 1.1 \times 10^{-4}=1.0 \times 10^{-14}

Hence,

\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10^{-14}}{1.1 \times 10^{-4}}=9.1 \times 10^{-11}

The \mathrm{pH} of the solution is

\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(9.1 \times 10^{-11}\right)=\mathbf{1 0 . 0 4}

Note that you could also calculate the \mathrm{pH} using the formula \mathrm{pH}+\mathrm{pOH}=14.00.

You would first calculate the \mathrm{pOH}; then \mathrm{pH}=14.00-\mathrm{pOH}.

Related Answered Questions