Question 17.5: Calculating Concentrations of Species in a Weak Base Solutio...
Calculating Concentrations of Species in a Weak Base Solution Using K_{b}
Morphine, \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}, is administered medically to relieve pain. It is a naturally occurring base, or alkaloid. What is the \mathrm{pH} of a 0.0075 \mathrm{M} solution of morphine at 25^{\circ} \mathrm{C} ? The base-ionization constant, K_{b}, is 1.6 \times 10^{-6} at 25^{\circ} \mathrm{C}.
PROBLEM STRATEGY
The calculation for the ionization of a weak base parallels that used with weak acids in Examples 17.2 and 17.3: you write the equation, make a table of concentrations (Step 1), set up the equilibrium-constant equation for K_{b} (Step 2), and solve for x= \left[\mathrm{OH}^{-}\right](Step 3). Assume the self-ionization of water can be neglected. You obtain \left[\mathrm{H}_{3} \mathrm{O}^{+}\right], and then the \mathrm{pH}, by solving K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right].
Learn more on how we answer questions.
Morphine, which we abbreviate as Mor, ionizes by picking up a proton from water (as does ammonia).
\operatorname{Mor}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \operatorname{HMor}^{+}(a q)+\mathrm{OH}^{-}(a q)
STEP 1 Summarize the concentrations in a table. For the change values, note that the morphine in 1 \mathrm{~L} of solution ionizes to give x mol HMor ^{+}and x \mathrm{~mol} \mathrm{OH}^{-}.
STEP 2 Substituting into the equilibrium equation
\frac{\left[\mathrm{HMor}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{Mor}]}=K_{b}
gives
\frac{x^{2}}{0.0075-x}=1.6 \times 10^{-6}
STEP 3 If you assume that x is small enough to neglect compared with 0.0075, you have
0.0075-x \simeq 0.0075
and you can write the equilibrium-constant equation as
\frac{x^{2}}{0.0075} \simeq 1.6 \times 10^{-6}
Hence,
\begin{gathered} x^{2} \simeq 1.6 \times 10^{-6} \times 0.0075=1.2 \times 10^{-8} \\ x=\left[\mathrm{OH}^{-}\right] \simeq 1.1 \times 10^{-4} \end{gathered}
You can now calculate the hydronium-ion concentration. The product of the hydronium-ion concentration and the hydroxide-ion concentration equals 1.0 \times 10^{-14} at 25^{\circ} \mathrm{C} :
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
Substituting into this equation gives
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times 1.1 \times 10^{-4}=1.0 \times 10^{-14}
Hence,
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10^{-14}}{1.1 \times 10^{-4}}=9.1 \times 10^{-11}
The \mathrm{pH} of the solution is
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(9.1 \times 10^{-11}\right)=\mathbf{1 0 . 0 4}
Note that you could also calculate the \mathrm{pH} using the formula \mathrm{pH}+\mathrm{pOH}=14.00.
You would first calculate the \mathrm{pOH}; then \mathrm{pH}=14.00-\mathrm{pOH}.