Question 17.10: Calculating the Common-Ion Effect on Acid Ionization (Effect...

Calculating the Common-Ion Effect on Acid Ionization (Effect of a Conjugate Base)

A solution is prepared to be 0.10 \mathrm{M} acetic acid, \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, and 0.20  \mathrm{M} sodium acetate, \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}. What is the \mathrm{pH} of this solution at 25^{\circ} \mathrm{C} ? K_{a} for acetic acid at 25^{\circ} \mathrm{C} is 1.7 \times 10^{-5}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

STEP 1 Consider the equilibrium

\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}(a q)

Initially, 1 \mathrm{~L} of solution contains 0.10 \mathrm{~mol} of acetic acid. Sodium acetate is a strong electrolyte, so 1 \mathrm{~L} of solution contains 0.20 \mathrm{~mol} of acetate ion. When the acetic acid ionizes, it gives x mol of hydronium ion and x mol of acetate ion. This is summarized in the following table:

\begin{array}{cccc}\text { Concentration }(M) & \mathrm{HC}_{2} \mathrm{H}_{3} \mathbf{O}_{2}(\text { aq })+\mathrm{H}_{2} \mathbf{O}(l) & \rightleftharpoons \mathrm{H}_{3} \mathbf{O}^{+}(\text {aq })&+\mathrm{C}_{2} \mathbf{H}_{3} \mathbf{O}_{2}{ }^{-}(\text {aq }) \\ \text { Starting } & 0.10 & \sim 0 & 0.20 \\ \text { Change } & -x & +x & +x \\ \text { Equilibrium } & 0.10-x & x & 0.20+x\end{array}

STEP 2 The equilibrium-constant equation is

\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=K_{a}

Substituting into this equation gives

\frac{x(0.20+x)}{0.10-x}=1.7 \times 10^{-5}

STEP 3 To solve the equation, assume that x is small compared with 0.10 and 0.20 . Then

\begin{aligned} & 0.20+x \simeq 0.20 \\ & 0.10-x \simeq 0.10 \end{aligned}

The equilibrium equation becomes

\frac{x(0.20)}{0.10} \simeq 1.7 \times 10^{-5}

Hence,

x \simeq 1.7 \times 10^{-5} \times \frac{0.10}{0.20}=8.5 \times 10^{-6}

(Note that x is indeed much smaller than 0.10 or 0.20 .) The hydronium-ion concentration is 8.5 \times 10^{-6} \mathrm{M}, and

\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(8.5 \times 10^{-6}\right)=\mathbf{5 . 0 7}

For comparison, the \mathrm{pH} of 0.10  \mathrm{M} acetic acid is 2.88 .

Related Answered Questions