Question 19.1: Calculating the Entropy Change for a Phase Transition The he...

Calculating the Entropy Change for a Phase Transition

The heat of vaporization, \Delta H_{\text {vap }}, of carbon tetrachloride, \mathrm{CCl}_{4}, at 25^{\circ} \mathrm{C} is 39.4 \mathrm{~kJ} / \mathrm{mol}.

\mathrm{CCl}_{4}(l) \longrightarrow \mathrm{CCl}_{4}(g) ; \Delta H_{\text {vap }}=43.0 \mathrm{~kJ} / \mathrm{mol}

If 1 \mathrm{~mol} of liquid carbon tetrachloride at 25^{\circ} \mathrm{C} has an entropy of 216 \mathrm{~J} / \mathrm{K}, what is the entropy of 1 \mathrm{~mol} of the vapor in equilibrium with the liquid at this temperature?

PROBLEM STRATEGY

The entropy change for this equilibrium vaporization is \Delta H_{v a p} / T. The entropy of the vapor equals the entropy of the liquid plus the entropy change.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

When liquid \mathrm{CCl}_{4} evaporates, it absorbs heat: \Delta H_{\text {vap }}=39.4 \mathrm{~kJ} / \mathrm{mol}(39.4 \times 10^{3} \mathrm{~J} / \mathrm{mol} ) at 25^{\circ} \mathrm{C}, or 298 \mathrm{~K}. The entropy change, \Delta S, is

\Delta S=\frac{\Delta H_{v a p}}{T}=\frac{39.4 \times 10^{3} \mathrm{~J} / \mathrm{mol}}{298 \mathrm{~K}}=132 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})

In other words, 1 \mathrm{~mol} of carbon tetrachloride increases in entropy by 132 \mathrm{~J} / \mathrm{K} when it vaporizes. The entropy of 1 \mathrm{~mol} of the vapor equals the entropy of 1 \mathrm{~mol} of liquid (216 \mathrm{~J} / \mathrm{K}) plus 132 \mathrm{~J} / \mathrm{K}.

\text { Entropy of vapor }=(216+132) \mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})=\mathbf{3 4 8}  \mathbf{J} /(\mathbf{m o l} \cdot \mathbf{K})

Note: This is the entropy at the equilibrium vapor pressure, which differs from S^{\circ} (entropy at 1 \mathrm{~atm} ).

Related Answered Questions