Question 17.11: Calculating the pH of a Buffer from Given Volumes of Solutio...
Calculating the pH of a Buffer from Given Volumes of Solution
Instructions for making up a buffer say to mix 60 . \mathrm{mL}(0.060 \mathrm{~L}) of 0.100 M \mathrm{NH}_{3} with 40. mL (0.040 L) of 0.100 M NH_4Cl. What is the pH of this buffer?
PROBLEM STRATEGY
The buffer contains a base and its conjugate acid in equilibrium. The equation is
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
The problem is to obtain the concentration of \mathrm{H}_{3} \mathrm{O}^{+}or \mathrm{OH}^{-}in this equilibrium mixture. To do the equilibrium calculation, you need the starting concentrations in the solution obtained by mixing the \mathrm{NH}_{3} and \mathrm{NH}_{4} \mathrm{Cl} solutions. For this, you calculate the moles of \mathrm{NH}_{3} and moles of \mathrm{NH}_{4}{ }^{+}added to the buffer solution, then divide by the total volume of buffer. Then you are ready to do the equilibrium calculation.
Learn more on how we answer questions.
How many moles of \mathrm{NH}_{3} are added? Recall that
\text { Molarity } \mathrm{NH}_{3}=\frac{\text { moles } \mathrm{NH}_{3}}{\text { liters } \mathrm{NH}_{3} \text { solution }}
Note that the instructions say to add 60 . \mathrm{mL} (or 0.060 \mathrm{~L} ) of 0.100 \mathrm{M} \mathrm{NH}_{3}. So
\begin{aligned} \text { Moles }\,\mathrm{NH}_{3} & =\text { molarity } \mathrm{NH}_{3} \times \text { liters } \mathrm{NH}_{3} \text { solution } \\ & =0.100 \frac{\mathrm{mol}}{\mathrm{L}} \times 0.060 \mathrm{~L}=0.0060 \mathrm{~mol} \mathrm{NH}_{3} \end{aligned}
In the same way, you find that you have added 0.0040 \mathrm{~mol} \mathrm{NH}_{4}^{+}(from \mathrm{NH}_{4} \mathrm{Cl} ). Assume that the total volume of buffer equals the sum of the volumes of the two solutions.
\text { Total volume buffer }=60 . \mathrm{mL}+40 . \mathrm{mL}=100 . \mathrm{mL}(0.100 \mathrm{~L})
Therefore, the concentrations of base and conjugate acid are
\begin{aligned} {\left[\mathrm{NH}_{3}\right] } & =\frac{0.0060 \mathrm{~mol}}{0.100 \mathrm{~L}}=0.060 \mathrm{M} \\ {\left[\mathrm{NH}_{4}{ }^{+}\right] } & =\frac{0.0040 \mathrm{~mol}}{0.100 \mathrm{~L}}=0.040 \mathrm{M} \end{aligned}
STEP 1 Fill in the concentration table for the acid-base equilibrium (base ionization of \mathrm{NH}_{3} ).
STEP 2 You substitute the equilibrium concentrations into the equilibrium-constant equation.
\begin{aligned} \frac{\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]} & =K_{b} \\ \frac{(0.040+x) x}{0.060-x} & =1.8 \times 10^{-5} \end{aligned}
STEP 3 To solve this equation, you assume that x is small compared with 0.040 and 0.060 . So this equation becomes
\frac{0.040 x}{0.060}=1.8 \times 10^{-5}
Therefore, x=(0.060 / 0.040) \times\left(1.8 \times 10^{-5}\right)=2.7 \times 10^{-5}. (Check that x can be neglected in 0.040+x and 0.060-x.) Thus, the hydroxide-ion concentration is 2.7 \times 10^{-5} M. The \mathrm{pH} of the buffer is
\mathrm{pH}=14.00-\mathrm{pOH}=14.00+\log \left(2.7 \times 10^{-5}\right)=\mathbf{9 . 4 3}
(If you have 2.7 \times 10^{-5} in your calculator from the previous calculation, you obtain the \mathrm{pH} by pressing the \log button, then adding 14.)