Question 10.8: Compute the 3σ X chart upper and lower control limits for th...
Compute the 3σ \bar{X} chart upper and lower control limits for the moisture data in Table 10.1.
TABLE 10.1 Moisture content for salt packages, as a percentage of total weight | ||||||||
Sample | Sample Values | Mean(\bar{X}) | Range (R) | SD (s) | ||||
1 | 2.53 | 2.66 | 1.88 | 2.21 | 2.26 | 2.308 | 0.780 | 0.303 |
2 | 2.69 | 2.38 | 2.34 | 2.47 | 2.61 | 2.498 | 0.350 | 0.149 |
3 | 2.67 | 2.23 | 2. 10 | 2.43 | 2.54 | 2.394 | 0.570 | 0.230 |
4 | 2.10 | 2.26 | 2.51 | 2.58 | 2.28 | 2.346 | 0.480 | 0.196 |
5 | 2.64 | 2.42 | 2.56 | 2.51 | 2.36 | 2.498 | 0.280 | 0.111 |
6 | 2.64 | 1.63 | 2.95 | 2.12 | 2.67 | 2.402 | 1.320 | 0.525 |
7 | 2.58 | 2.69 | 3.01 | 3.01 | 2.23 | 2.704 | 0.780 | 0.327 |
8 | 2.31 | 2.39 | 2.60 | 2.40 | 2.46 | 2.432 | 0.290 | 0.108 |
9 | 3.03 | 2.68 | 2.27 | 2.54 | 2.63 | 2.630 | 0.760 | 0.274 |
10 | 2.86 | 3.22 | 2.72 | 3.09 | 2.48 | 2.874 | 0.740 | 0.294 |
11 | 2.71 | 2.80 | 3.09 | 2.60 | 3.39 | 2.918 | 0.790 | 0.320 |
12 | 2.95 | 3.54 | 2.59 | 3.31 | 2.87 | 3.052 | 0.950 | 0.375 |
13 | 3.14 | 2.84 | 3.77 | 2.80 | 3.22 | 3. 154 | 0.970 | 0.390 |
14 | 2.85 | 3.29 | 3.25 | 3.35 | 3.59 | 3.266 | 0.740 | 0.267 |
15 | 2.82 | 3.71 | 3.36 | 2.95 | 3.37 | 3.242 | 0.890 | 0.358 |
16 | 3.17 | 3.07 | 3.14 | 3.63 | 3.70 | 3.342 | 0.630 | 0.298 |
17 | 2.81 | 3.21 | 2.95 | 3.04 | 2.85 | 2.972 | 0.400 | 0.160 |
18 | 2.99 | 2.65 | 2.79 | 2.80 | 2.95 | 2.836 | 0.340 | 0.137 |
19 | 3.11 | 2.74 | 2.59 | 3.01 | 3.03 | 2.896 | 0.520 | 0.221 |
20 | 2.83 | 2.74 | 3.03 | 2.68 | 2.49 | 2.754 | 0.540 | 0.198 |
21 | 2.76 | 2.85 | 2.59 | 2.23 | 2.87 | 2.660 | 0.640 | 0.265 |
22 | 2.54 | 2.63 | 2.32 | 2.48 | 2.93 | 2.580 | 0.610 | 0.226 |
23 | 2.27 | 2.54 | 2.82 | 2.11 | 2.69 | 2.486 | 0.710 | 0.293 |
24 | 2.40 | 2.62 | 2.84 | 2.50 | 2.51 | 2.574 | 0.440 | 0.168 |
25 | 2.41 | 2.72 | 2.29 | 2.35 | 2.63 | 2.480 | 0.430 | 0. 186 |
26 | 2.40 | 2.33 | 2.40 | 2.02 | 2.43 | 2.316 | 0.410 | 0. 169 |
27 | 2.56 | 2.47 | 2.1 1 | 2.43 | 2.85 | 2.484 | 0.740 | 0.266 |
28 | 2.21 | 2.61 | 2.59 | 2.24 | 2.34 | 2.398 | 0.400 | 0.191 |
29 | 2.56 | 2.26 | 1.95 | 2.26 | 2.40 | 2.286 | 0.610 | 0.225 |
30 | 2.42 | 2.37 | 2. 13 | 2.09 | 2.41 | 2.284 | 0.330 | 0.161 |
31 | 2.62 | 2.11 | 2.47 | 2.27 | 2.49 | 2.392 | 0.510 | 0.201 |
32 | 2.21 | 2.15 | 2.18 | 2.59 | 2.61 | 2.348 | 0.460 | 0.231 |
\overline{\overline{X}}=2.6502 | \bar{R}=0.6066 | \bar{s}=0.2445 |
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Learn more on how we answer questions.
With sample 6 deleted, the value of \bar{X} is 2.658, and the value of \bar{s} is 0.2354. The sample size is n = 5. From the table, A_3 = 1.427. Therefore the upper control limit is 2.658 + (1.427)(0.2354) = 2.994, and the lower control limit is 2.658 – (1.427)(0.2354) = 2.322.
Related Answered Questions
Question: 10.14
Verified Answer:
To attain six-sigma quality, the value of C...
Question: 10.12
Verified Answer:
The specification limits are LSL = 71.4 and USL = ...
Question: 10.10
Verified Answer:
The average of the 40 counts is \bar{c }[/l...
Question: 10.9
Verified Answer:
The average of the 30 sample proportions is [latex...
Question: 10.7
Verified Answer:
The value of \bar{s} is 0.2445 (Tab...
Question: 10.6
Verified Answer:
Let σ denote the new process standard deviation. T...
Question: 10.5
Verified Answer:
Let m be the new mean to which the process has shi...
Question: 10.3
Verified Answer:
Let \bar{X} be the mean of a sample...
Question: 10.2
Verified Answer:
With sample 6 deleted, the value of \overli...
Question: 10.1
Verified Answer:
The value of \overline{R} is 0.6066...