Question A.6.1: Consider a vector A = Arc rc + AΦ Φ + Az z at a point (rc, Φ...

Consider a vector A = A_{r_{c}} \hat{r}_{c} + A_{Φ} \hat{Φ} + A_{z} \hat{z} at a point (r_{c}, Φ, z) in cylindrical coordinates. Determine its location and representation in Cartesian coordinates.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table A.1 the location in Cartesian coordinates is x = r_{c} cos(Φ), y = r_{c} sin(Φ), z = z. Similarly, the vector representation is

Table A.1 Coordinate transformations for Cartesian coordinates

Spherical Cylindrical Cartesian
= sin(θ) cos(Φ)\hat{r}_{s} +cos(θ)cos(Φ)\hat{θ} – sin(Φ)\hat{Φ}  = cos(Φ)\hat{r}_{c} – sin(Φ)\hat{Φ} \hat{x}
= sin(θ) sin(Φ)\hat{r}_{s} +cos(θ)sin(Φ)\hat{θ} + cos(Φ)\hat{Φ} = sin(Φ)\hat{r}_{c} + cos(Φ)\hat{Φ} \hat{y}
= cos(θ)\hat{r} -sin(θ)\hat{θ} = \hat{z} \hat{z}
= r_{s} sin(θ)cos(Φ) = r_{c}cos(Φ) x
= r_{s} sin(θ)sin(Φ) = r_{c}sin(Φ) y
= r_{s}cos(θ) = z z
= A_{r_{s}}sin(θ)cos(Φ) +A_{θ}cos(θ)cos(Φ) -A_{Φ}sin(Φ) = A_{r_{c}}cos(Φ) -A_{Φ}sin(Φ) A_{x}
= A_{r_{s}}sin(θ)sin(Φ) +A_{θ}cos(θ)sin(Φ) + A_{Φ}cos(Φ) = A_{r_{c}}sin(Φ) -A_{Φ}cos(Φ) A_{y}
= A_{r_{s}}cos(θ) – A_{θ}sin(θ) = A_{z} A_{z}

A = \underbrace{(A_{r_{c}}cos(Φ) -A_{Φ}sin(Φ))}_{A_{x}} \hat{x} + \underbrace{(A_{r_{c}}sin(Φ) -A_{Φ}cos(Φ))}_{A_{y}} \hat{y} + A_{z}\hat{z}.

 

Related Answered Questions