Question A.6.3: Consider a vector A = Ax x + Ay y +Az z at a point (x, y, z)...

Consider a vector A = A_{x} \hat{x} + A_{y} \hat{y} +A_{z} \hat{z} at a point (x, y, z) in Cartesian coordinates. Determine its location and representation in spherical coordinates.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table A.3 the location of (x, y, z) is r_{s} = \sqrt{x^{2}+y^{2} +z^{2}}, θ = cos^{-1}(z/\sqrt{x^{2}+y^{2} +z^{2}}), and Φ = tan^{-1}(y/x) . The vector is

TABLE A.3 Coordinate transformations for spherical coordinates

Cylindrical Cartesian Spherical
= sin(θ) \hat{r}_{c} +cos(θ)\hat{z}  = sin(θ) cos(Φ)\hat{x} + sin(θ) sin(Φ)\hat{y} +cos(θ) \hat{z} \hat{r}_{s}
= cos(θ) \hat{r}_{c} – sin(θ)\hat{z} = cos(θ) cos(Φ)\hat{x} + cos(θ) sin(Φ)\hat{y} – sin(θ) \hat{z} \hat{θ}
= \hat{Φ} = – sin(Φ)\hat{x} + cos(Φ)\hat{y} \hat{Φ}
= \sqrt{r_{c}^{2} +z^{2}} = \sqrt{x^{2}+y^{2} +z^{2}} r_{s}
= cos^{-1} (\frac{z}{\sqrt{r_{c}^{2} +z^{2}}}) = cos^{-1} (\frac{z}{\sqrt{x^{2}+y^{2} +z^{2}}}) θ
= Φ = tan^{-1}(y/x) Φ
= A_{r_{c}}sin(θ) +A_{z}cos(θ) = A_{x}sin(θ)cos(Φ)+ A_{y}sin(θ)sin(Φ) +A_{z}cos(θ) A_{r_{s}}
= A_{r}cos(θ) – A_{z}sin(θ) = A_{x}cos(θ)cos(Φ)+ A_{y}cos(θ)sin(Φ) – A_{z}sin(θ) A_{θ}
= A_{Φ} = – A_{x}sin(Φ) +A_{y}cos(Φ) A_{Φ}

A = \underbrace{(A_{x}sin(θ)cos(Φ)+ A_{y}sin(θ)sin(Φ) +A_{z}cos(θ))}_{A_{r_{s}}}\hat{r}_{s}

+ \underbrace{(A_{x}cos(θ)cos(Φ)+ A_{y}cos(θ)sin(Φ) – A_{z}sin(θ))}_{A_{θ}} \hat{θ}

+ \underbrace{(-A_{x}sin(Φ) +A_{y}cos(Φ))}_{A_{Φ}} \hat{Φ}.

Related Answered Questions