Question A.6.3: Consider a vector A = Ax x + Ay y +Az z at a point (x, y, z)...
Consider a vector A = A_{x} \hat{x} + A_{y} \hat{y} +A_{z} \hat{z} at a point (x, y, z) in Cartesian coordinates. Determine its location and representation in spherical coordinates.
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Learn more on how we answer questions.
From Table A.3 the location of (x, y, z) is r_{s} = \sqrt{x^{2}+y^{2} +z^{2}}, θ = cos^{-1}(z/\sqrt{x^{2}+y^{2} +z^{2}}), and Φ = tan^{-1}(y/x) . The vector is
TABLE A.3 Coordinate transformations for spherical coordinates
Cylindrical | Cartesian | Spherical |
= sin(θ) \hat{r}_{c} +cos(θ)\hat{z} | = sin(θ) cos(Φ)\hat{x} + sin(θ) sin(Φ)\hat{y} +cos(θ) \hat{z} | \hat{r}_{s} |
= cos(θ) \hat{r}_{c} – sin(θ)\hat{z} | = cos(θ) cos(Φ)\hat{x} + cos(θ) sin(Φ)\hat{y} – sin(θ) \hat{z} | \hat{θ} |
= \hat{Φ} | = – sin(Φ)\hat{x} + cos(Φ)\hat{y} | \hat{Φ} |
= \sqrt{r_{c}^{2} +z^{2}} | = \sqrt{x^{2}+y^{2} +z^{2}} | r_{s} |
= cos^{-1} (\frac{z}{\sqrt{r_{c}^{2} +z^{2}}}) | = cos^{-1} (\frac{z}{\sqrt{x^{2}+y^{2} +z^{2}}}) | θ |
= Φ | = tan^{-1}(y/x) | Φ |
= A_{r_{c}}sin(θ) +A_{z}cos(θ) | = A_{x}sin(θ)cos(Φ)+ A_{y}sin(θ)sin(Φ) +A_{z}cos(θ) | A_{r_{s}} |
= A_{r}cos(θ) – A_{z}sin(θ) | = A_{x}cos(θ)cos(Φ)+ A_{y}cos(θ)sin(Φ) – A_{z}sin(θ) | A_{θ} |
= A_{Φ} | = – A_{x}sin(Φ) +A_{y}cos(Φ) | A_{Φ} |
A = \underbrace{(A_{x}sin(θ)cos(Φ)+ A_{y}sin(θ)sin(Φ) +A_{z}cos(θ))}_{A_{r_{s}}}\hat{r}_{s}
+ \underbrace{(A_{x}cos(θ)cos(Φ)+ A_{y}cos(θ)sin(Φ) – A_{z}sin(θ))}_{A_{θ}} \hat{θ}
+ \underbrace{(-A_{x}sin(Φ) +A_{y}cos(Φ))}_{A_{Φ}} \hat{Φ}.
Related Answered Questions
Question: A.6.2
Verified Answer:
From Table A.2 the location of (r_{s}[/late...
Question: A.6.1
Verified Answer:
From Table A.1 the location in Cartesian coordinat...