Question 19.3: Consider the following reaction of methane with molecular ch...

Consider the following reaction of methane with molecular chlorine:

CH_{4}\left( g \right)+Cl_{2}\left( g \right)\to CH_{3}Cl\left( g \right)+HCl\left( g \right)

Experimental studies have shown that the rate law for this reaction is one-half order with respect to Cl_{2}. Is the following mechanism consistent with this behavior?

Cl_{2} \overset{k_{1}}\longrightarrow 2 Cl\cdot

 

Cl\cdot +CH_{4}\overset{k_{2}}\longrightarrow HCl+CH_{3}\cdot

 

CH_{3}\cdot+Cl_{2} \overset{k_{3}}\longrightarrow CH_{3}Cl+Cl\cdot

 

Cl\cdot +Cl\cdot \overset{k_{4}}\longrightarrow Cl_{2}

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The rate of reaction in terms of product HCl is given by

R=\frac{d\left[ HCl \right]}{dt}=k_{2}\left[ Cl\cdot \right]\left[ CH_{4} \right]

Because Cl\cdot is a reaction intermediate, it cannot appear in the final rate law expression, and Cl\cdot must be expressed in terms of \left[ CH_{4} \right] and \left[ Cl_{2} \right]. The differential rate expressions for \left[ Cl\cdot \right] and \left[ CH_{3}Cl\cdot \right] are

\frac{d\left[ Cl\cdot \right]}{dt}=2k_{1}\left[ Cl_{2} \right]-k_{2}\left[ Cl\cdot \right]\left[ CH_{4} \right]+k_{3}\left[ CH_{3}\cdot \right]\left[ Cl_{2} \right]-2k_{4}\left[ Cl\cdot \right]^{2}

 

\frac{d\left[ CH_{3}\cdot\right]}{dt}=k_{2}\left[ Cl\cdot \right]\left[ CH_{4} \right]-k_{3}\left[ CH_{3}\cdot \right]\left[ Cl_{2} \right]

Applying the steady-state approximation to the expression for \left[ CH_{3}\cdot\right]  yields

\left[ CH_{3}\cdot\right] =\frac{k_{2}\left[ Cl\cdot \right]\left[ CH_{4} \right]}{k_{3}\left[ Cl_{2} \right]}

Next, we substitute this definition of \left[ CH_{3}\cdot\right] into the differential rate expression for \left[ Cl\cdot \right] and apply the steady state approximation:

0=2k_{1}\left[ Cl_{2} \right]-k_{2}\left[ Cl\cdot \right]\left[ CH_{4} \right]+k_{3}\left[ CH_{3}\cdot \right]\left[ Cl_{2} \right]-2k_{4}\left[ Cl\cdot \right]^{2}

 

0=2k_{1}\left[ Cl_{2} \right]-k_{2}\left[ Cl\cdot \right]\left[ CH_{4} \right]+k_{3}\left( \frac{k_{2}\left[ Cl\cdot \right]\left[ CH_{4} \right]}{k_{3}\left[ Cl_{2} \right]} \right)\left[ Cl_{2} \right]-2k_{4}\left[ Cl\cdot \right]^{2}

 

0=2k_{1}\left[ Cl_{2} \right]-2k_{4}\left[ Cl\cdot \right]^{2}

 

\left[ Cl\cdot \right]=\left( \frac{k_{1}}{k_{4}} \left[ Cl_{2} \right]\right)^{1/2}

With this result, the predicted rate law expression becomes

R=k_{2}\left[ Cl\cdot \right]\left[ CH_{4} \right]=k_{2}\left( \frac{k_{1}}{k_{4}} \right)^{1/2}\left[ CH_{4} \right]\left[ Cl_{2} \right]^{1/2}

The mechanism is consistent with the experimentally observed one-half order dependence on \left[ Cl_{2} \right].

 

 

Related Answered Questions