Question 9.1: Determining Gear Tooth and Gear Mesh Parameters. Find the ge...
Determining Gear Tooth and Gear Mesh Parameters.
Find the gear ratio, circular pitch, base pitch, pitch diameters, pitch radii, center distance, addendum, dedendum, whole depth, clearance, outside diameters, and contact ratio of a gearset with the given parameters. If the center distance is in‑ creased 2% what is the new pressure angle and increase in backlash?
Given: A 6 p_{d} , 20° pressure angle, 19-tooth pinion is meshed with a 37-tooth gear.
Assume: The tooth forms are standard AGMA full-depth involute profiles.
Learn more on how we answer questions.
1 The gear ratio is found from the tooth numbers on pinion and gear using equations 9.5a and 9.5c.
m_{V}=\pm \frac{d_{i n}}{d_{o u t}}=\pm \frac{N_{i n}}{N_{o u t}} (9.5a)
m_{G}=\left|m_{V}\right| \text { or } m_{G}=\left|m_{T}\right|, \text { for } m_{G} \geq 1 (9.5c)
m_{G}=\frac{N_{g}}{N_{p}}=\frac{37}{19}=1.947 (a)
2 The circular pitch can be found either from equation 9.4a or 9.4d.
p_{c}=\frac{\pi d}{N} (9.4a)
p_{d}=\frac{\pi}{p_{c}} (9.4d)
p_{c}=\frac{\pi}{p_{d}}=\frac{\pi}{6}=0.524 \text { in } (b)
3 The base pitch measured on the base circle is (from equation 9.4b):
p_{b}=p_{c} \cos \phi (9.4b)
p_{b}=p_{c} \cos \phi=0.524 \cos \left(20^{\circ}\right)=0.492 \text { in } (c)
4 The pitch diameters and pitch radii of pinion and gear are found from equation 9.4c.
d_{p}=\frac{N_{p}}{p_{d}}=\frac{19}{6}=3.167 \text { in, } \quad r_{p}=\frac{d_{p}}{2}=1.583 \text { in } (d)
d_{g}=\frac{N_{g}}{p_{d}}=\frac{37}{6}=6.167 \text { in, } \quad r_{g}=\frac{d_{g}}{2}=3.083 \text { in } (e)
5 The nominal center distance C is the sum of the pitch radii:
C=r_{p}+r_{g}=4.667 \text { in } (f)
6 The addendum and dedendum are found from the equations in Table 9-1:
a=\frac{1.0}{p_{d}}=0.167 \text { in, } \quad b=\frac{1.25}{p_{d}}=0.208 \text { in } (g)
7 The whole depth h_{t} is the sum of the addendum and dedendum.
h_{t}=a+b=0.167+0.208=0.375 \text { in } (h)
8 The clearance is the difference between dedendum and addendum.
c=b-a=0.208-0.167=0.042 \text { in } (i)
9 The outside diameter of each gear is the pitch diameter plus two addenda:
D_{o_{p}}=d_{p}+2 a=3.500 \text { in, } \quad D_{o_{g}}=d_{g}+2 a=6.500 \text { in } (j)
10 The contact ratio is found from equations 9.2 and 9.6a.
\begin{aligned}Z=& \sqrt{\left(r_{p}+a_{p}\right)^{2}-\left(r_{p} \cos \phi\right)^{2}}+\sqrt{\left(r_{g}+a_{g}\right)^{2}-\left(r_{g} \cos \phi\right)^{2}}-C \sin \phi \\=& \sqrt{(1.583+0.167)^{2}-\left(1.583 \cos 20^{\circ}\right)^{2}} \\&+\sqrt{(3.083+0.167)^{2}-\left(3.083 \cos 20^{\circ}\right)^{2}}-4.667 \sin 20^{\circ}=0.798 \text { in } \\m_{p}=& \frac{Z}{p_{b}}=\frac{0.798}{0.492}=1.62\end{aligned} (k)
11 If the center distance is increased from the nominal value due to assembly errors or other fac‑ tors, the effective pitch radii will change by the same percentage. The gears’ base radii will remain the same. The new pressure angle can be found from the changed geometry. For a 2% increase in center distance (1.02x):
\phi_{\text {new }}=\cos ^{-1}\left(\frac{r_{\text {base circle }_{p}}}{1.02 r_{p}}\right)=\cos ^{-1}\left(\frac{r_{p} \cos \phi}{1.02 r_{p}}\right)=\cos ^{-1}\left(\frac{\cos 20^{\circ}}{1.02}\right)=22.89^{\circ} (l)
12 The change in backlash as measured at the pinion is found from equation 9.3.
\theta_{B}=43200(\Delta C) \frac{\tan \phi}{\pi d}=43200(0.02)(4.667) \frac{\tan \left(22.89^{\circ}\right)}{\pi(3.167)}=171 \text { minutes of arc } (m)
\begin{aligned}&\text { TABLE 9-1 AGMA Full-Depth Gear Tooth Specifications }\\&\begin{array}{lll}\hline {\text { Parameter }} & \text { Coarse Pitch } \left( p_{ d }< 2 0 \right) & \text { Fine Pitch }\left(p_{ d } \geq 2 0 \right) \\\hline \text { Pressure angle } \phi & 20^{\circ} \text { or } 25^{\circ} & 20^{\circ} \\\text { Addendum } a & 1.000 / p_{d} & 1.000 / p_{d} \\\text { Dedendum } b & 1.250 / p_{d} & 1.250 / p_{d} \\\text { Working depth } & 2.000 / p_{d} & 2.000 / p_{d} \\\text { Whole depth } & 2.250 / p_{d} & 2.200 / p_{d}+0.002 \text { in } \\\text { Circular tooth thickness } & 1.571 / p_{d} & 1.571 / p_{d} \\\text { Fillet radius-basic rack } & 0.300 / p_{d} & \text { Not standardized } \\\text { Minimum basic clearance } & 0.250 / p_{d} & 0.200 / p_{d}+0.002 \text { in } \\\text { Minimum width of top land } & 0.250 / p_{d} & \text { Not standardized } \\\text { Clearance } \text { shaved or ground teeth) } & 0.350 / p_{d} & 0.350 / p_{d}+0.002 \text { in } \\\hline\end{array}\end{aligned} |