Question 11.1: Dynamic Force Analysis of a Single Link in Pure Rotation. (S...

Dynamic Force Analysis of a Single Link in Pure Rotation. (See Figure 11‑1)
Given: The 10-in-long link shown weighs 4 lb. Its CG is on the line of centers at the 5-in point. Its mass moment of inertia about its CG is 0.08 lb-in-sec². Its kinematic data are:

\begin{array}{cccc}\theta_{2} deg & \omega_{2} rad / sec & \alpha_{2} rad / sec ^{2} & a_{G_{2}} in / sec ^{2} \\30 & 20 & 15 & 2001 @ 208^{\circ}\end{array}

An external force of 40 lb at 0° is applied at point P.

Find: The force F _{12} \text { at pin joint } O_{2} \text { and the driving torque } T _{12} needed to maintain motion with the given acceleration for this instantaneous position of the link.

Screenshot 2022-02-04 170007
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

1 Convert the given weight to proper mass units, in this case blobs:

\text { mass }=\frac{\text { weight }}{g}=\frac{4 lb }{386 in / sec ^{2}}=0.0104 \text { blob }                        (a)

2 Set up a local coordinate system at the CG of the link and draw all applicable vectors acting on the system as shown in the figure. Draw a free-body diagram as shown.

3 Calculate the x and y components of the position vectors R _{12} \text { and } R _{P} in this coordinate system:

\begin{array}{lll}R _{12}=5 \text { in @ } \angle 210^{\circ} ; & R_{12_{x}}=-4.33, & R_{12_{y}}=-2.50 \\R _{P}=5 \text { in @ } \angle 30^{\circ} ; & R_{P_{x}}=+4.33, & R_{P_{y}}=+2.50\end{array}                      (b)

4 Calculate the x and y components of the acceleration of the CG in this coordinate system:

a _{G}=2001 @ \angle 208^{\circ} ; \quad a_{G_{x}}=-1766.78, \quad a_{G_{y}}=-939.41                      (c)

Calculate the x and y components of the external force at P in this coordinate system:

F _{P}=40 @ \angle 0^{\circ} ; \quad F_{P_{x}}=40, \quad F_{P_{y}}=0                        (d)

Substitute these given and calculated values into the matrix equation 11.4:

\left[\begin{array}{ccc}1 & 0 & 0 \\0 & 1 & 0 \\-R_{12_{y}} & R_{12_{x}} & 1\end{array}\right] \times\left[\begin{array}{l}F_{12_{x}} \\F_{12_{y}} \\T_{12}\end{array}\right]=\left[\begin{array}{l}m_{2} a_{G_{x}}-F_{P_{x}} \\m_{2} a_{G_{y}}-F_{P_{y}} \\I_{G} \alpha-\left(R_{P_{x}} F_{P_{y}}-R_{P_{y}} F_{P_{x}}\right)\end{array}\right]                          (11.4)

 

\begin{gathered}{\left[\begin{array}{ccc}1 & 0 & 0 \\0 & 1 & 0 \\2.50 & -4.33 & 1\end{array}\right] \times\left[\begin{array}{c}F_{12_{x}} \\F_{12_{y}} \\T_{12}\end{array}\right]=\left[\begin{array}{c}(0.01)(-1766.78)-40 \\(0.01)(-939.41)-0 \\(0.08)(15)-\{(4.33)(0)-(2.5)(40)\}\end{array}\right]} \\{\left[\begin{array}{ccc}1 & 0 & 0 \\0 & 1 & 0 \\2.50 & -4.33 & 1\end{array}\right] \times\left[\begin{array}{c}F_{12_{x}} \\F_{12_{y}} \\T_{12}\end{array}\right]=\left[\begin{array}{c}-57.67 \\-9.39 \\101.2\end{array}\right]}\end{gathered}                               (e)

7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix C using a pocket calculator with matrix capability; using Mathcad or Matlab; or by putting the values for matrices A and C into program Matrix downloadable with this text.

Program Matrix gives the following solution:

F_{12 x}=-57.67 lb , \quad F_{12 y}=-9.39 lb , \quad T_{12}=204.72 lb – in                   (f)

Converting the force to polar coordinates:

F _{12}=58.43 @ \angle 189.25^{\circ}                     (g)

Related Answered Questions