Question 19.1: Employing the Lennard–Jones 6–12 potential, determine the se...

Employing the Lennard–Jones 6–12 potential, determine the second virial coefficient, in cm³/mol, for CH_{4} at 222 K.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Appendix O, the force constants for CH_{4} are ε/k = 148 K and σ = 3.81 Å. Hence, from Eq. (19.42), the reduced temperature is

T^{*} \equiv \frac{k T}{\varepsilon},                         (19.42)

T^{*}=\frac{k T}{\varepsilon}=\frac{222}{148}=1.5.

Consequently, from Appendix Q, the reduced second virial coefficient, B^{*}\left(T^{*}\right), is −1.20. On this basis, the second virial coefficient, in cm³/mole, can be determined from Eqs. (19.37) and (19.44), i.e.,

b_{\circ}=\frac{2 \pi}{3} N_{A} \sigma^{3}                             (19.37)

B^{*}\left(T^{*}\right) \equiv \frac{B(T)}{b_{\circ}},                                     (19.44)

B(T)=\frac{2 \pi}{3} N_{A} \sigma^{3} B^{*}\left(T^{*}\right).

Evaluating this expression, we have

B(T)=\frac{2 \pi}{3}\left(6.02 \times 10^{23}  mol ^{-1}\right)\left(3.81 \times 10^{-8}  cm \right)^{3}(-1.20)

and thus

B(T) = −1.20(69.7 cm³/mol) = −83.7 cm³/mol .

The negative value of B(T) in this case underscores the importance of attractive forces at low temperatures, as confirmed by Fig. 19.3.

19.3

Related Answered Questions