Question B.4: Evaluate: (a) (2 + j5)(8e^j10°)/2 + j4 + 2 − 40° (b) j(3 − j...

Evaluate:

\text { (a) } \frac{(2+j 5)\left(8 e^{j 10^{\circ}}\right)}{2+j 4+2 \underline{/-40^{\circ}} }            \text { (b) } \frac{j(3-j 4)^{*}}{(-1+j 6)(2+j)^{2}}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since there are terms in polar and exponential forms, it may be best to express all terms in polar form:

2+j 5=\sqrt{2^{2}+5^{2}} \underline{/ \tan ^{-1} 5 / 2} =5.385\underline{ / 68.2^{\circ}}
(2+j 5)\left(8 e^{j 10^{\circ}}\right)=\left(5.385\underline{ / 68.2^{\circ}} \right)\left(8\underline{ / 10^{\circ}} \right)=43.08 \underline{/ 78.2^{\circ}}
2+j 4+2 \underline{/-40^{\circ}} =2+j 4+2 \cos \left(-40^{\circ}\right)+j 2 \sin \left(-40^{\circ}\right)
=3.532+j 2.714=4.454\underline{ / 37.54^{\circ}}

Thus,

\frac{(2+j 5)\left(8 e^{j 10^{\circ}}\right)}{2+j 4+2\underline{ /-40^{\circ}} }=\frac{43.08 \underline{/ 78.2^{\circ}} }{4.454\underline{ / 37.54^{\circ}} }=9.672\underline{ / 40.66^{\circ}}

(b) We can evaluate this in rectangular form, since all terms are in that form. But

j(3-j 4)^{*} = j(3 + j4) = −4 + j3
(2 + j)² = 4 + j4 − 1 = 3 + j4
(−1 + j6)(2 + j)² = (−1 + j6)(3 + j4) = −3 − 4j + j18 − 24
= −27 + j14

Hence,

\frac{j(3-j 4)^{*}}{(-1+j 6)(2+j)^{2}}=\frac{-4+j 3}{-27+j 14}=\frac{(-4+j 3)(-27-j 14)}{27^{2}+14^{2}}
=\frac{108+j 56-j 81+42}{925}=0.1622-j 0.027

Related Answered Questions

Question: B.5

Verified Answer:

(a) First, convert A to polar form: r=\sqrt...
Question: B.3

Verified Answer:

(a) If A = 2 + j5, then A^{*} = 2 −...