Question 9.6: Evaluate the entropy for NO2 (J/K · mol) at 500 K and 1 bar.

Evaluate the entropy for NO_{2} (J/K · mol) at 500 K and 1 bar.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Section 8.4, we recognize that the entropy can be determined by summing the various contributions from all four energy modes, i.e.,

\frac{s}{R}=\left(\frac{s}{R}\right)_{t r}+\left(\frac{s}{R}\right)_{e l}+\left(\frac{s}{R}\right)_{r o t}+\left(\frac{s}{R}\right)_{v i b}.

The translational contribution, from Eq.(9.11), is

\left(\frac{s}{R}\right)_{t r}=\ln \left[\frac{(2 \pi m)^{3 / 2}(k T)^{5 / 2}}{h^{3} P}\right]+\frac{5}{2}

so that

\left(\frac{s}{R}\right)_{t r}=\ln \left\{\frac{\left[2 \pi(46.0055)\left(1.6605 \times 10^{-27}\right)\right]^{3 / 2}\left[\left(1.3807 \times 10^{-23}\right)(500)\right]^{5 / 2}}{\left(6.6261 \times 10^{-34}\right)^{3}\left(1.0 \times 10^{5}\right)}\right\}+\frac{5}{2}

= 20.1280.

A more direct procedure is to use Eq. (9.12), i.e., the Sackur–Tetrode equation, thus obtaining

\left(\frac{s}{R}\right)_{t r}=\frac{5}{2} \ln T+\frac{3}{2} \ln M-\ln P-1.1516=\frac{5}{2} \ln (500)+\frac{3}{2} \ln (46.0055)-1.1516

= 20.1280.

From Eq. (8.15), the contribution from all internal energy modes is

\left(\frac{s}{R}\right)_{i n t}=T\left(\frac{\partial \ln Z_{i n t}}{\partial T}\right)_{V}+\ln Z_{i n t}                                (8.15)

\frac{s_{i n t}}{R}=T\left(\frac{\partial \ln Z_{i n t}}{\partial T}\right)_{V}+\ln Z_{i n t} .

Hence, the electronic contribution, as obtained by using Eqs. (9.77) and (9.78) with the NO_{2} term symbol ({ }^{2} A_{1}) from Appendix K.3, becomes

Z_{e l}=\sum\limits_{j} g_{j} e^{-\varepsilon_{j} / k T} \simeq g_{0},                    (9.77)

g_{el} = 2S + 1,            (9.78)

\left(\frac{s}{R}\right)_{e l}=\ln g_{0}=\ln 2=0.6931.

The rotational contribution can be determined from Eqs. (9.82) and (9.84); the result is

Z_{r o t}=\frac{1}{\sigma} \sqrt{\frac{\pi T^{3}}{\theta_{r x} \theta_{r y} \theta_{r z}}},            (9.82)

\left(\frac{u}{R T}\right)_{r o t}=T\left(\frac{\partial \ln Z_{r o t}}{\partial T}\right)_{V}=\frac{3}{2}              (9.84)

\left(\frac{s}{R}\right)_{r o t}=\frac{3}{2}+\ln \left[\frac{1}{\sigma} \sqrt{\frac{\pi T^{3}}{\theta_{r x} \theta_{r y} \theta_{r z}}}\right].

From Appendix K.3, the three rotational constants for NO_{2} follow: B_{e 1}=8.0012_\ cm ^{-1},B_{e 2}=0.4336_\ cm ^{-1} \text {, and } B_{e 3}=0.4104_\ cm ^{-1}. The resulting characteristic rotational temperatures, as obtained from Eq. (9.83), are \theta_{r x} = 11.511 K, \theta_{r y} = 0.6238 K, and \theta_{r z} = 0.5904 K. Hence, the rotational contribution to the entropy becomes

\theta_{r i}=\frac{h c}{k} B_{e i}=\frac{h^{2}}{8 \pi^{2} k I_{e i}}.                  (9.83)

\left(\frac{s}{R}\right)_{r o t}=\frac{3}{2}+\ln \left[\frac{1}{2} \sqrt{\frac{\pi(500)^{3}}{(11.511)(0.6238)(0.5904)}}\right]=9.9789,

where σ = 2 from the V-shaped molecular structure of O–N–O. Finally, the vibrational contribution, from Eqs. (9.86) and (9.88), is

Z_{v i b}=\prod\limits_{i=1}^{m}\frac{1}{1-e^{-\theta_{v i} / T}},                (9.86)

\left(\frac{u}{R T}\right)_{v i b}=T\left(\frac{\partial \ln Z_{v i b}}{\partial T}\right)_{V}=\sum\limits_{i=1}^{m} \frac{\theta_{v i} / T}{e^{\theta_{v i} / T}-1}                      (9.88)

\left(\frac{s}{R}\right)_{v i b}=\sum\limits_{i=1}^{3}\left\{\frac{\theta_{v i} / T}{e^{\theta_{v i} / T}-1}-\ln \left(1-e^{-\theta_{v i} / T}\right)\right\}.

The three vibrational frequencies, extracted from Appendix K.3, are \omega_{e 1}=1616.8_\ cm ^{-1}, \omega_{e 2}=1319.7_\ cm ^{-1}, \text { and } \omega_{e 3}=749.65_\ cm ^{-1}. The resulting characteristic vibrational temperatures, as obtained from Eq. (9.87), are \theta_{v 1} = 2326.1 K, \theta_{v 2} = 1898.7 K, and \theta_{v 3} = 1078.5 K. Therefore, the vibrational contribution to the entropy from the three normal modes of NO_{2} becomes

\theta_{v i}=\frac{h c}{k} \omega_{e i},                        (9.87)

\left(\frac{s}{R}\right)_{v i b} = (0.0448 + 0.0871 + 0.2821) + (0.0096 + 0.0227 + 0.1229) = 0.5692.

As we have now evaluated the contributions from all four energy modes, we find that

\frac{s}{R}=\left(\frac{s}{R}\right)_{t r}+\left(\frac{s}{R}\right)_{e l}+\left(\frac{s}{R}\right)_{r o t}+\left(\frac{s}{R}\right)_{v i b}

 

= 20.1280 + 0.6931 + 9.9789 + 0.5692 = 31.3692.

Therefore, a final calculation gives, for the total entropy,

s = 31.3692 (8.3145 J/K · mol) = 260.819 J/K · mol.

Related Answered Questions

Question: 9.5

Verified Answer:

From Eq. (4.39), the specific Gibbs free energy ca...
Question: 9.4

Verified Answer:

From Section 8.4, we recognize that the internal e...
Question: 9.3

Verified Answer:

From Appendix K.1, we find that for HF the rotatio...
Question: 9.2

Verified Answer:

From Eq. (9.7), the translational contribution to ...