Question A.4.3: Evaluate the integral ∮s A· ds where A(x, y) = αrr + βzz, an...

Evaluate the integral \oint_{s} A· ds where A(x, y) = αr\hat{r} + βz\hat{z}, and S is the closed surface of the cylinder shown in Fig. A.8. Here, α and β are constants.

A8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We use cylindrical coordinates. First, we determine the unit normals on the surface of the cylinder. We find that

\hat{n} =  \left\{\begin{matrix} \hat{z} \qquad z  =  L\\ \hat{r} \qquad r  =  a\\ -\hat{z} \qquad z  =  0. \end{matrix} \right.

Next, we evaluate A· ds over S using Eq. (A.17) and obtain

Eq. (A.17): ds  = \left\{\begin{matrix} r  dΦ  dz \qquad (constant  r) \\  dr  dz \qquad (constant  Φ) \\ r  dr  dΦ \qquad (constant  z),\end{matrix} \right.

A· ds =  \left\{\begin{matrix} βLr  dr  dΦ \qquad (ds = r  dr  dΦ)\qquad z  =  L\\ α a^{2}dΦ dz \qquad (ds = a  dΦ  dz) \qquad r  =  a\\ 0 \qquad (ds = r  dr  dΦ)\qquad  z  =  0. \end{matrix} \right.

Therefore,

\int_{s} A· ds = βL \int_{0}^{2π} \int_{0}^{a} r  dr  dΦ + α a^{2}\int_{0}^{L} \int_{0}^{2π} dΦ  dz

= βL πa^{2} + αa^{2}2πL

= (2α+β)πa^{2}L.

Related Answered Questions

Question: A.4.2

Verified Answer:

Along path 1 we have \int_{C_{1}} A(x,y)⋅dl...
Question: A.4.1

Verified Answer:

Along path 1 we have \int_{c_{1}}(x^{2} + y...