Question 2.18: Figure 2.28 shows the state of stress at a point. Determine ...
Figure 2.28 shows the state of stress at a point. Determine the principal normal and shear stresses and the orientation at which they act. Also determine the octahedral normal and shear stresses.

Learn more on how we answer questions.
Stress tensor, \left[\tau _{ i j}\right]=\begin{vmatrix} {3} & {2} & {0} \\ {2} & {4} & {1} \\ {0} & {1} & {2} \end{vmatrix} MPa
Stress invariants,
I_1 =\tau_{x x}+\tau_{y y}+\tau_{z z}=3+4+2=9I_2 =\tau_{x x} \tau_{y y}+\tau_{y y} \tau_{z z}+\tau_{z z} \tau_{x x}-\tau_{x y}^2-\tau_{y z}^2-\tau_{z x}^2
=3 \times 4+4 \times 2+2 \times 3-2^2-1^2-0 =21
I_3=\begin{vmatrix} {\tau_{x x}} & {\tau_{x y}} & {\tau_{z x}} \\ {\tau_{x y}} & {\tau_{x y}} & {\tau_{z y}} \\ {\tau_{x z}} & {\tau_{y z}} & {\tau_{z z}} \end{vmatrix}= \begin{vmatrix} {3} & {2} & {0} \\ {2} & {4} & {1} \\ {0} & {1} & {2} \end{vmatrix}=13
Substituting in Eq. (2.13b),
\tau_{n n}^3-I_1 \tau_{n n}^2+I_2 \tau_{n n}-I_3=0or, \tau_{n n}^3-9 \tau_{n n}^2+21 \tau_{n n}-13=0
Solving by hit and trial, \tau_{n n}=1,2.27,5.73
Using Eqs (2.11) and (2.12), for direction cosines of the plane, when, principal normal stress \sigma_I=1 MPa,
\tau _{xy}\times c_{nx}+(\tau _{yy}-\tau _{nn})\times c_{ny}+\tau _{zy}\times c_{nz}=0 (2.11b)
\left(c_{n x}\right)^2+\left(c_{n y}\right)^2+\left(c_{n z}\right)^2=1 (2.12)
(3-1) \times c_{n x}+2 \times c_{n y}=0
2 \times c_{n x}+(4-1) \times c_{n y}+1 \times c_{n z}=0
1 \times c_{n y}+(2-1) \times c_{n z}=0
Solution of these equations gives,
c_{n x}=c_{n y}=-c_{n z}=\pm 1 / \sqrt{3}Again using Eqs (2.11) and (2.12), for direction cosines of the plane, when, principal normal stress \sigma_{II} = 2.27 MPa
\left(c_{n x}\right)^2+\left(c_{n y}\right)^2+\left(c_{n z}\right)^2=1
(3-2.27) \times c_{n x}+2 \times c_{n y}=0
2 \times c_{n x}+(4-2.27) \times c_{n y}+1 \times c_{n z}=0
1 \times c_{n y}+(2-2.27) \times c_{n z}=0
Solution of these equations gives,
-c_{n x}=\pm 0.5811,
c_{n y}=\pm 0.2121,
and c_{n z}=\pm 0.7855
Similarly, when principal normal stress \sigma_{III}= 5.73 MPa, the direction cosines are,
c_{n x}=\pm 0.5776,
c_{n y}=\pm 0.7884,
and, c_{n z}=\pm 0.2113
Normal octahedral stress, Eq. (2.14),
\tau_{n n, oct } =\frac{\tau _{xx}+\tau _{yy}+\tau _{zz}}{}=\frac{\sigma_I+\sigma_{I I}+\sigma_{I I I}}{3} (2.14)
\tau_{n n, oct } =\frac{\sigma_I+\sigma_{I I}+\sigma_{I I I}}{3}=\frac{1+2.27+5.73}{3} = 3 MPa
Octahedral shear stress is given by Eq. (2.18),
\tau _{n s,oct}=\frac{1}{3} \sqrt{(\sigma _{I}-\sigma _{II})^2 +(\sigma _{II}-\sigma _{III})^2+(\sigma _{III}-\sigma _{I})^2 }=\frac{1}{3} \sqrt{(1-2.27)^2+(2.27-5.73)^2 +(5.73-1)^2}=2 MPa
Principal shear stress and normal stress on the planes of principal shear stress are given by Eq. (2.20)
\tau _{I}=\frac{\sigma _{II}-\sigma _{III}}{2} \ \text{and} \ \sigma _n=\frac{\sigma _{II}+\sigma _{III}}{2} (2.20a)
\tau _{II}=\frac{\sigma _{III}-\sigma _{I}}{2} \ \text{and} \ \sigma _n=\frac{\sigma _{III}+\sigma _{I}}{2} (2.20b)
\tau _{III}=\frac{\sigma _{I}-\sigma _{II}}{2} \ \text{and} \ \sigma _n=\frac{\sigma _{I}+\sigma _{II}}{2} (2.20c)
\tau_I =\frac{2.27-1}{2}=\pm 0.635 MPa ,
\sigma_n=\frac{1+2.27}{2}=1.635 MPa
\tau_{I I}=\frac{5.73-2.27}{2}=\pm 1.73 MPa ,
\sigma_n=\frac{2.27+5.73}{2}=4 MPa
\tau_{III}=\frac{5.73-1}{2}=\pm 2.365 MPa ,
\sigma_n=\frac{5.73+1}{2}=3.365 MPa
The planes of principal shear stress bisect the planes of principal normal stress.