Question 2.19: Figure 2.28 shows the state of stress at a point. Determine ...

Figure 2.28 shows the state of stress at a point. Determine the stress tensor on xyzx^{\prime}y^{\prime}z^{\prime} reference frame rotated such that xx^{\prime}-axis makes equal angle with x, y, z directions in first quadrant and yy^{\prime}-axis makes 60° with x-axis.

Screenshot 2022-10-13 035040
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using simpler notations for direction cosines,

let l1,m1,n1l_1 , m_1 , n_1 = direction cosines of xx^{\prime} w.r.t. x, y, z axis,

l2,m2,n2l_2, m_2, n_2 = direction cosines of yy^{\prime} w.r.t. x, y, z axis,

l3,m3,n3l_3, m_3, n_3 = direction cosines of zz^{\prime} w.r.t. x, y, z axis

Since x,yand zx^{\prime} ,y^{\prime} and  z^{\prime} are mutually perpendicular to each other, their direction cosines will be related as follows.

l1×l2+m1×m2+n1×n2=0l_1 \times l_2 +m_1 \times m_2 + n_1\times n_2=0 (i)

l2×l3+m2×m3+n2×n3=0l_2 \times l_3 + m_2 \times m_3 + n_2 \times n_3 = 0 (ii)

l3×l1+m3×m1+n3×n1=0l_3 \times l_1 +m_3\times m_1 +n_3 \times n_1=0 (iii)

Using Eq. (2.12) for relating direction cosines of xx^{\prime}-axis,

(cnx)2+(cny)2+(cnz)2=1(c_{nx})^2+(c_{ny})^2+(c_{nz})^2=1            (2.12)

 

l12+m12+n12=1l_1 ^{2} + m_1^{2} + n_1^{2}=1 (iv)

Since xx^{\prime}-axis is inclined equally w.r.t. x, y and z directions,
l1=m1=n1=1/3=±0.5773l_1= m_1= n_1= 1/\sqrt{3} = \pm 0.5773

Using only +ve value for further calculations, substitute these values in Eq. (i),
l2+m2+n2=0l_2 +m_2+n_2=0 (v)

But, l2l_2 = cos 60° = 0.5

m2=0.5n2m_2=-0.5-n_2

Substituting in Eq. (2.12),

0.52+(0.5n2)2+n22=10.5^2 + (-0.5 – n_2)^2+ n_2^2= 1

or, n2=0.309 and m2=0.809 n_2= 0.309  and  m_2= -0.809

Similarly using Eqs (ii), (iii) and (2.12),

l3=0.6455,m3=0.1103,n3=0.7557l_3= – 0.6455, m_3= -0.1103, n_3= 0.7557

Stress tensor in rotated xyzx^{\prime}y^{\prime} z^{\prime} reference direction is obtained by using Eq. (2.10d) in matrix notation,

τns=ij×τij×cni×cnj\tau _{ns}=\sum\limits_{i}\sum\limits_{j}\times \tau_{ij}\times c_{ni}\times c_{nj}                (2.10d)

[τns]=[c]×[τij]×[c]T\left[\tau _{n s}\right]=\left[c\right] \times \left[\tau _{i j }\right] \times \left[c\right]^{T}

 

[τns]=0.57730.57730.57730.50.8090.3090.64550.11030.7557\left[\tau _{n s}\right]=\begin{vmatrix} {0.5773 } & {0.5773 } & {0.5773 } \\ {0.5} & {-0.809} & {0.309 } \\ {-0.6455} & {-0.1103} & {0.7557} \end{vmatrix}320.5773241012\begin{vmatrix} {3} & {2} & {0.5773 } \\ {2} & {4 } & {1 } \\ {0} & {1} & {2} \end{vmatrix}0.55730.50.64550.57730.8090.11030.57730.3090.7557\begin{vmatrix} {0.5573} & {0.5} & {-0.6455 } \\ {0.5773} & {-0.809 } & {-0.1103 } \\ {0.5773} & {0.309} & {0.7557} \end{vmatrix}

 

=5.01.291.01.291.440.1441.00.1442.56 Mpa=\begin{vmatrix} {5.0} & {-1.29} & {-1.0 } \\ {-1.29} & {1.44 } & {0.144 } \\ {-1.0} & {0.144} & {2.56} \end{vmatrix}  Mpa

Related Answered Questions

Question: 2.17

Verified Answer:

Direction cosine matrix for transformation (Fig. 2...
Question: 2.12

Verified Answer:

Plot the three stresses on a straight line ...