Question 6.12: Figure 6.13 shows the subsoil profile at Kawagishi-cho in Ni...

Figure 6.13 shows the subsoil profile at Kawagishi-cho in Niigata. Assume a level-ground site with the groundwater table at a depth of 1.5 m below ground surface; the medium sand and medium-fine sand have less than 5 percent fines; the total unit weight \gamma_{t} of the soil above the groundwater table is 18.3 kN/m³; and the buoyant unit weight \gamma_{b} of the soil below the groundwater table is 9.7 kN/m³.

The standard penetration data shown in Fig. 6.13 are uncorrected N values. Assume a hammer efficiency E_{m} of 0.6 and a boring diameter of 100 mm, and the length of drill rods is equal to the depth of the SPT test below ground surface. The earthquake conditions are a peak ground acceleration a_{\max } of 0.16g and a magnitude of 7.5. Using the standard penetration test data, determine the factor of safety against liquefaction versus depth.

6.13
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

See App. E for the solution and Fig. 6.14 for a plot of the factor of safety against liquefaction versus depth.

See page E.6.

Cyclic stress ratio (CSR) N value corrections
Depth,
m
\sigma_{v},,
kPa
\sigma_{v}^{\prime},
kPa
\sigma_{v} / \sigma_{v}^{\prime} r_{d} CSR N value C_{r} N_{60} C_{N} \left(N_{1}\right)_{60} CRR FS = CRR/CSR
1.5 27.5 27.5 1.00 0.98 0.10 8 0.75 6.0 1.91 11 0.12 1.18
2.5 47.0 37.2 1.26 0.97 0.13 5 0.75 3.8 1.64 6.2 0.07 0.55
3.5 66.5 46.9 1.42 0.96 0.14 4 0.75 3.0 1.46 4.4 0.05 0.35
4.5 86.0 56.6 1.52 0.95 0.15 5 0.85 4.3 1.33 5.7 0.06 0.40
5.5 105 66.3 1.58 0.93 0.15 9 0.85 7.7 1.23 9.5 0.11 0.72
6.5 125 76.0 1.64 0.92 0.16 10 0.95 9.5 1.15 11 0.12 0.76
7.5 144 85.7 1.68 0.91 0.16 12 0.95 11 1.08 12 0.13 0.82
8.5 164 95.4 1.72 0.90 0.16 12 0.95 11 1.02 11 0.12 0.75
9.5 183 105 1.74 0.89 0.16 15 0.95 14 0.98 14 0.16 1.00
10.5 203 115 1.77 0.87 0.16 11 1.00 11 0.93 10 0.11 0.69
11.5 222 124 1.79 0.86 0.16 23 1.00 23 0.90 21 0.23 1.44
12.5 242 134 1.81 0.85 0.16 11 1.00 11 0.86 9.5 0.11 0.69
13.5 261 144 1.81 0.84 0.16 10 1.00 10 0.83 8.3 0.09 0.57
14.5 281 154 1.82 0.83 0.16 10 1.00 10 0.81 8.1 0.09 0.57
15.5 300 163 1.84 0.81 0.16 25 1.00 25 0.78 20 0.23 1.48
16.5 320 173 1.85 0.80 0.15 27 1.00 27 0.76 21 0.24 1.56
17.5 339 183 1.85 0.79 0.15 4 1.00 4 0.74 3.0 0.03 0.20
18.5 359 192 1.87 0.78 0.15 5 1.00 5 0.72 3.6 0.04 0.26
19.5 378 202 1.87 0.77 0.15 3 1.00 3 0.70 2.1 0.02 0.13
20.5 398 212 1.88 0.75 0.15 38 1.00 38 0.69 26 0.30 2.05
Notes: Cyclic stress ratio:  a_{\max }=0.16 g, r_{d} from Eq. (6.7). N value corrections: E_{m}=0.6, C_{b}=1.0, C_{N} from Eq. (5.2). CRR from Fig. 6.6.
r_{d}=1-0.012 z      (6.7)                 \left(N_{1}\right)_{60}=C_{N} N_{60}=\left(100 / \sigma_{v 0}^{\prime}\right)^{0.5} N_{60}       (5.2)
6.14
6.6

Related Answered Questions

Question: 6.17

Verified Answer:

Per Fig. 6.16, the standard penetration test data ...
Question: 6.14

Verified Answer:

Per Fig. 6.14, the standard penetration test data ...