Question 6.15: Figure 6.15 shows the subsoil profile at a sewage disposal s...
Figure 6.15 shows the subsoil profile at a sewage disposal site in Niigata. Assume a level-ground site with the groundwater table at a depth of 0.4 m below ground surface, the medium to coarse sand has less than 5 percent fines, the total unit weight \gamma_{t} of the soil above the groundwater table is 18.3 kN/m³, and the buoyant unit weight \gamma_{b} of the soil below the groundwater table is 9.7 kN/m³.
The standard penetration data shown in Fig. 6.15 are uncorrected N values. Assume a hammer efficiency E_{m} of 0.6 and a boring diameter of 100 mm, and the length of drill rods is equal to the depth of the SPT test below ground surface. The earthquake conditions are a peak ground acceleration a_{\max } of 0.16g and a magnitude of 7.5. Using the standard penetration test data, determine the factor of safety against liquefaction versus depth.

Learn more on how we answer questions.
See App. E for the solution and Fig. 6.16 for a plot of the factor of safety against liquefaction versus depth.
See page E.8.
Depth, m | Cyclic stress ratio | N value corrections | CRR | FS = CRR/CSR | ||||||||
\sigma_{v}, kPa | \sigma_{v}^{\prime}, kPa | \sigma_{v} / \sigma_{v}^{\prime} | r_{d} | CSR | N value | C_{r} | N_{60} | C_{N} | \left(N_{1}\right)_{60} | |||
1.2 | 22.9 | 15.1 | 1.52 | 0.99 | 0.16 | 4 | 0.75 | 3.0 | 2.57* | 7.7 | 0.09 | 0.56 |
2.2 | 42.4 | 24.8 | 1.71 | 0.97 | 0.17 | 6 | 0.75 | 4.5 | 2.01* | 9.0 | 0.1 | 0.59 |
3.2 | 61.9 | 34.5 | 1.79 | 0.96 | 0.18 | 5 | 0.75 | 3.8 | 1.70 | 6.5 | 0.07 | 0.39 |
4.2 | 81.5 | 44.2 | 1.84 | 0.95 | 0.18 | 8 | 0.85 | 6.8 | 1.50 | 10 | 0.11 | 0.61 |
5.2 | 101 | 53.9 | 1.87 | 0.94 | 0.18 | 7 | 0.85 | 6.0 | 1.36 | 8.2 | 0.09 | 0.50 |
6.2 | 120 | 63.6 | 1.89 | 0.93 | 0.18 | 13 | 0.95 | 12 | 1.25 | 15 | 0.16 | 0.89 |
7.2 | 140 | 73.3 | 1.91 | 0.91 | 0.18 | 36 | 0.95 | 34 | 1.17 | 40 | >0.5 | >2.8 |
8.2 | 159 | 83.0 | 1.92 | 0.90 | 0.18 | 24 | 0.95 | 23 | 1.09 | 25 | 0.29 | 1.61 |
9.2 | 179 | 92.7 | 1.93 | 0.89 | 0.18 | 35 | 0.95 | 33 | 1.04 | 34 | >0.5 | >2.8 |
10.2 | 199 | 102 | 1.95 | 0.88 | 0.18 | 30 | 1.00 | 30 | 0.99 | 30 | 0.50 | 2.78 |
11.2 | 218 | 112 | 1.95 | 0.87 | 0.18 | 28 | 1.00 | 28 | 0.94 | 26 | 0.30 | 1.67 |
12.2 | 238 | 122 | 1.95 | 0.85 | 0.17 | 32 | 1.00 | 32 | 0.91 | 29 | 0.45 | 2.65 |
13.2 | 257 | 131 | 1.96 | 0.84 | 0.17 | 16 | 1.00 | 16 | 0.87 | 14 | 0.16 | 0.94 |
14.2 | 277 | 141 | 1.96 | 0.83 | 0.17 | 28 | 1.00 | 28 | 0.84 | 24 | 0.28 | 1.65 |
15.2 | 296 | 151 | 1.96 | 0.82 | 0.17 | 27 | 1.00 | 27 | 0.81 | 22 | 0.25 | 1.47 |
16.2 | 316 | 161 | 1.96 | 0.81 | 0.17 | 23 | 1.00 | 23 | 0.79 | 18 | 0.20 | 1.18 |
17.2 | 335 | 170 | 1.97 | 0.79 | 0.16 | 39 | 1.00 | 38 | 0.77 | 29 | 0.45 | 2.81 |
18.2 | 355 | 180 | 1.97 | 0.78 | 0.16 | 32 | 1.00 | 32 | 0.75 | 24 | 0.28 | 1.75 |
19.2 | 374 | 190 | 1.97 | 0.77 | 0.16 | 47 | 1.00 | 47 | 0.73 | 34 | >0.5 | >3.1 |
Notes: Cyclic stress ratio: a_{\max }=0.16 g, r_{d} from Eq. (6.7). N value corrections: E_{m}=0.6, C_{b}=1.0, C_{N} from Eq. (5.2). CRR from Fig. 6.6. *Suggested maximum values of C_{N} range from 1.7 to 2.0 (Youd and Idriss 1997, 2001). r_{d}=1-0.012 z (6.7) \left(N_{1}\right)_{60}=C_{N} N_{60}=\left(100 / \sigma_{v 0}^{\prime}\right)^{0.5} N_{60} (5.2) |

