Question 17.2: Find the Chebyshev transfer function that meets the same low...

Find the Chebyshev transfer function that meets the same low-pass filter specifications given in Example 17.1: namely, fp = 10 kHz, Amax = 1 dB, fs = 15 kHz, Amin = 25 dB, dc gain = 1.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substituting Amax = 1 dB into Eq. (17.21) yields \epsilon = 0.5088. By trying various values for N in Eq. (17.22)

\epsilon = \sqrt{10_{A_{max}/  –  1}}            (17.21)

A(ω_{s}) = 10 \log \left[1 + \epsilon^{2}  cosh^{2} (Ncosh ^{-1}(ω_{s}/ω_{p})) \right]      (17.22)

we find that N = 4 yields A(ωs) = 21.6 dB and N = 5 provides 29.9 dB. We thus select N = 5. Recall that we required a ninth-order Butterworth filter to meet the same specifications in Example 17.1. The poles are obtained by substituting in Eq. (17.23) as

p_{k} = −ω_{p} sin \left(\frac{2 k  −  1 }{N}\frac{π}{2}\right)  sinh \left(\frac{1}{N}  sinh^{-1}\frac{1}{\epsilon}\right) + j ω_{p}cos \left(\frac{2 k  −  1 }{N}\frac{π}{2}\right)  cosh \left(\frac{1}{N}  sinh^{-1}\frac{1}{\epsilon}\right)                 k = 1, 2, . . . ,N       (17.23)

p1,p5 = ωp (−0.0895 ± j0.9901)
p2,p4 = ωp (−0.2342 ± j0.6119)
p5 = ωp (−0.2895)

The transfer function is obtained by substituting these values in Eq. (17.24) as

T(s) = \frac{K ω^{N}_{p}}{\epsilon 2 ^{N  –  1}(s  −  p_{1})(s  −  p_{2}) · · · (s  −  p_{N} )}              (17.24)

T(s) = \frac{ω^{5}_{p}}{ 8.1408  (s  +  0.2895  ω_{p}) (s^{2}  +  s  0.4684  ω_{p}  +  ω^{2}_{p})} × \frac{1}{s^{2}  +  s  0.1789  ω_{p}  +  0.9883  ω^{2}_{p}}                  (17.25)

where ωp = 2π × 104 rad/s.

Related Answered Questions