Question 16.8: Find the peak amplitudes of the first three non-zero terms i...

Find the peak amplitudes of the first three non-zero terms in the amplitude phase Fourier series for a symmetric triangular wave having peak amplitude x_0=10 \mathrm{~V}  and period T=2 \mathrm{~ms} .

Table  16.2  Fourier coefficients for selected waveforms { }^5

  \begin{aligned} &X_k=\frac{x_0 \tau}{T} \operatorname{sa}\left(\frac{k \pi \tau}{T}\right) ; \quad k=0, \pm 1, \pm 2, \cdots \\ &x_{r m s}=\sqrt{\frac{x_0^2 \tau}{T}} \end{aligned}
  \begin{aligned} &X_k=\frac{x_0 \tau}{2 T} \mathrm{sa}^2\left(\frac{k \pi \tau}{2 T}\right) ; \quad k=0, \pm 1, \pm 2, \ldots \\ &x_{r m s}=\sqrt{\frac{x_0{ }^2 \tau}{3 T}} \end{aligned} 
  \begin{aligned} &X_k=\frac{j x_0}{2 k \pi}\left[e^{-j k \pi \tau / T_{-}} \mathrm{sa}\left(\frac{k \pi \tau}{2 T}\right)\right] ; \quad k=\pm 1, \pm 2, \ldots \\ &X_0=\frac{x_0 \tau}{2 T}, \quad x_{r m s}=\sqrt{\frac{x_0^2 \tau}{3 T}} \end{aligned} 
  X_k=\frac{x_0}{2 T\left(\tau_2-\tau_1\right)}\left[\tau_2^2 \mathrm{sa}^2\left(\frac{k \pi \tau_2}{2 T}\right)-\tau_1^2 \mathrm{sa}^2\left(\frac{k \pi \tau_1}{2 T}\right)\right]
k=0, \pm 1, \pm 2, \ldots
x_{r m s}=\sqrt{\frac{x_0^2}{3 T}\left(2 \tau_1+\tau_2\right)}
   \begin{aligned} &X_k=\frac{x_0 \tau\left(1-e^{-T / \tau}\right)}{T+j 2 k \pi \tau} ; \quad k=\pm 2, \pm 3, \pm 4 \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2 \tau}{2 T}\left(1-e^{-2 T / \tau}\right)} \end{aligned}
   \begin{aligned} &X_0=0 \\\\ &X_k=x_0 \mathrm{sa}\left(\frac{k \pi}{2}\right) ; \quad k=\pm 1, \pm 2, \pm 3, \ldots \\\\ &x_{r m s}=x_0 \end{aligned}
   \begin{aligned} &X_0=0 \\\\ &X_k=x_0 \mathrm{sa}^2\left(\frac{k \pi}{2}\right) ; \quad k=\pm 1, \pm 2, \pm 3, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{3}} \end{aligned}
   \begin{aligned} &X_0=0 \\\\ &X_k=\frac{j x_0(-1)^k}{\pi k} ; \quad k=\pm 1, \pm 2, \pm 3, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{3}} \end{aligned}
   \begin{aligned} &X_0=0 \\\\ &X_k=\frac{x_0}{T(T-2 \tau)}\left[(T-\tau)^2 \operatorname{sa}^2\left(\frac{k \pi[T-\tau]}{2 T}\right)-\tau^2 \mathrm{sa}^2\left(\frac{k \pi \tau}{T}\right)\right] \\\\ &k=\pm 1, \pm 2, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{3 T}(T+4 \tau)} \end{aligned}
   \begin{aligned} &X_k=\frac{x_1 \tau}{2 T}\left\{\operatorname{sa}\left[\frac{(k+1) \pi \tau}{T}\right]+\operatorname{sa}\left[\frac{(k-1) \pi \tau}{T}\right]\right\}-\frac{\left(x_1-x_0\right) \tau}{T} \operatorname{sa}\left(\frac{k \pi \tau}{T}\right) \\\\ &k=0, \pm 1, \pm 2, \pm 3, \cdots \\\\ &\tau=\frac{T}{\pi} \cos ^{-1}\left(1-\frac{x_0}{x_1}\right) \end{aligned}

  x_{r m s}=\frac{x_1^2}{2 \pi}\left\{\sin \left(\frac{\pi \tau}{T}\right)\left[\cos \left(\frac{\pi \tau}{T}\right)+4\left(\frac{x_0}{x_1}-1\right)\right]+\frac{\pi \tau}{T}\left[2\left(\frac{x_0}{x_1}\right)^2-4 \frac{x_0}{x_1}+3\right]\right\}

  \begin{aligned} \tau=& \frac{T}{\pi} \cos ^{-1}\left(\frac{x_0}{x_1}\right) \\\\ X_0 &=0 \\\\ X_{\pm 1} &=\frac{x_1}{2}-\frac{x_1 \tau}{T}\left[\mathrm{sa}\left(\frac{2 \pi \tau}{T}\right)+1\right]+\frac{2 x_0 \tau}{T} \mathrm{sa}\left(\frac{\pi \tau}{T}\right) \\\\ X_k &=\frac{x_1 \tau\left[(-1)^k-1\right]}{2 T}\left\{\mathrm{sa}\left[\frac{(k+1) \pi}{2}\right]+\mathrm{sa}\left[\frac{(k-1) \pi}{2}\right]-\frac{2 x_0}{x_1} \mathrm{sa}\left(\frac{k \pi \tau}{T}\right)\right\} \\\\ k &=\pm 2, \pm 3, \pm 4 \cdots \\\\ x_{r m s} &=\sqrt{\frac{2 x_0^2 \tau}{T}+\frac{x_1^2}{2 \pi T}\left[\pi(T-2 \tau)-T \sin \left(\frac{2 \pi \tau}{T}\right)\right]} \end{aligned}
\begin{aligned} &X_k=\frac{x_0}{4}\left\{\mathrm{sa}\left[\frac{(k+1) \pi}{2}\right]+\mathrm{sa}\left[\frac{(k-1) \pi}{2}\right]\right\} ; k=0, \pm 1, \pm 2, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{4}} \end{aligned}
  \begin{aligned} &X_k=\frac{x_0\left[1+(-1)^k\right]}{4}\left\{\mathrm{sa}\left[\frac{(k+1) \pi}{2}\right]+\mathrm{sa}\left[\frac{(k-1) \pi}{2}\right]\right\} \\\\ &k=0, \pm 1, \pm 2, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{2}} \end{aligned}
{ }^5 \text { In the table, symmetric means even symmetry about the vertical axis. }
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table  16.2 , the Fourier coefficients for a symmetric triangular wave are given by :

\begin{aligned} &X_0=x_{d c}=0 \\ &X_k=x_0 \operatorname{sa}^2\left(\frac{k \pi}{2}\right) ; \quad k=\pm 1, \pm 2, \pm 3, \cdots \end{aligned}

We can use a spreadsheet (e.g., Excel), a computer program (e.g., Matlab), or a pocket calculator to compute the coefficients. We obtain the values in Table  16.3   :

Table 16.3 See Example 16.8
k 0 1 2 3 4 5
  X_k(\mathrm{~V}) 0.000 4.053 0.000 0.45 0.000 0.162

The first three non-zero coefficients are  X_1, X_3, X_5 . The peak amplitudes of the terms in the corresponding amplitude-phase series are

 

\begin{aligned} &A_1=2\left|X_1\right|=8.106 \mathrm{~V}, \\\\ &A_3=2\left|X_3\right|=900 \mathrm{mV}, \\\\ &A_5=2\left|X_5\right|=324 \mathrm{mV} . \end{aligned}

Related Answered Questions

Question: 16.6

Verified Answer:

In (16.22), t_0  is arbitrary for ...
Question: 16.7

Verified Answer:

Using (16.22) with t_0=-T / 2  to ...
Question: 16.14

Verified Answer:

The Fourier coefficients are given in Table 16.2. ...