Holooly Plus Logo

Question 16.8: Find the peak amplitudes of the first three non-zero terms i...

Find the peak amplitudes of the first three non-zero terms in the amplitude phase Fourier series for a symmetric triangular wave having peak amplitude x_0=10 \mathrm{~V}  and period T=2 \mathrm{~ms} .

Table  16.2  Fourier coefficients for selected waveforms { }^5

  \begin{aligned} &X_k=\frac{x_0 \tau}{T} \operatorname{sa}\left(\frac{k \pi \tau}{T}\right) ; \quad k=0, \pm 1, \pm 2, \cdots \\ &x_{r m s}=\sqrt{\frac{x_0^2 \tau}{T}} \end{aligned}
  \begin{aligned} &X_k=\frac{x_0 \tau}{2 T} \mathrm{sa}^2\left(\frac{k \pi \tau}{2 T}\right) ; \quad k=0, \pm 1, \pm 2, \ldots \\ &x_{r m s}=\sqrt{\frac{x_0{ }^2 \tau}{3 T}} \end{aligned} 
  \begin{aligned} &X_k=\frac{j x_0}{2 k \pi}\left[e^{-j k \pi \tau / T_{-}} \mathrm{sa}\left(\frac{k \pi \tau}{2 T}\right)\right] ; \quad k=\pm 1, \pm 2, \ldots \\ &X_0=\frac{x_0 \tau}{2 T}, \quad x_{r m s}=\sqrt{\frac{x_0^2 \tau}{3 T}} \end{aligned} 
  X_k=\frac{x_0}{2 T\left(\tau_2-\tau_1\right)}\left[\tau_2^2 \mathrm{sa}^2\left(\frac{k \pi \tau_2}{2 T}\right)-\tau_1^2 \mathrm{sa}^2\left(\frac{k \pi \tau_1}{2 T}\right)\right]
k=0, \pm 1, \pm 2, \ldots
x_{r m s}=\sqrt{\frac{x_0^2}{3 T}\left(2 \tau_1+\tau_2\right)}
   \begin{aligned} &X_k=\frac{x_0 \tau\left(1-e^{-T / \tau}\right)}{T+j 2 k \pi \tau} ; \quad k=\pm 2, \pm 3, \pm 4 \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2 \tau}{2 T}\left(1-e^{-2 T / \tau}\right)} \end{aligned}
   \begin{aligned} &X_0=0 \\\\ &X_k=x_0 \mathrm{sa}\left(\frac{k \pi}{2}\right) ; \quad k=\pm 1, \pm 2, \pm 3, \ldots \\\\ &x_{r m s}=x_0 \end{aligned}
   \begin{aligned} &X_0=0 \\\\ &X_k=x_0 \mathrm{sa}^2\left(\frac{k \pi}{2}\right) ; \quad k=\pm 1, \pm 2, \pm 3, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{3}} \end{aligned}
   \begin{aligned} &X_0=0 \\\\ &X_k=\frac{j x_0(-1)^k}{\pi k} ; \quad k=\pm 1, \pm 2, \pm 3, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{3}} \end{aligned}
   \begin{aligned} &X_0=0 \\\\ &X_k=\frac{x_0}{T(T-2 \tau)}\left[(T-\tau)^2 \operatorname{sa}^2\left(\frac{k \pi[T-\tau]}{2 T}\right)-\tau^2 \mathrm{sa}^2\left(\frac{k \pi \tau}{T}\right)\right] \\\\ &k=\pm 1, \pm 2, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{3 T}(T+4 \tau)} \end{aligned}
   \begin{aligned} &X_k=\frac{x_1 \tau}{2 T}\left\{\operatorname{sa}\left[\frac{(k+1) \pi \tau}{T}\right]+\operatorname{sa}\left[\frac{(k-1) \pi \tau}{T}\right]\right\}-\frac{\left(x_1-x_0\right) \tau}{T} \operatorname{sa}\left(\frac{k \pi \tau}{T}\right) \\\\ &k=0, \pm 1, \pm 2, \pm 3, \cdots \\\\ &\tau=\frac{T}{\pi} \cos ^{-1}\left(1-\frac{x_0}{x_1}\right) \end{aligned}

  x_{r m s}=\frac{x_1^2}{2 \pi}\left\{\sin \left(\frac{\pi \tau}{T}\right)\left[\cos \left(\frac{\pi \tau}{T}\right)+4\left(\frac{x_0}{x_1}-1\right)\right]+\frac{\pi \tau}{T}\left[2\left(\frac{x_0}{x_1}\right)^2-4 \frac{x_0}{x_1}+3\right]\right\}

  \begin{aligned} \tau=& \frac{T}{\pi} \cos ^{-1}\left(\frac{x_0}{x_1}\right) \\\\ X_0 &=0 \\\\ X_{\pm 1} &=\frac{x_1}{2}-\frac{x_1 \tau}{T}\left[\mathrm{sa}\left(\frac{2 \pi \tau}{T}\right)+1\right]+\frac{2 x_0 \tau}{T} \mathrm{sa}\left(\frac{\pi \tau}{T}\right) \\\\ X_k &=\frac{x_1 \tau\left[(-1)^k-1\right]}{2 T}\left\{\mathrm{sa}\left[\frac{(k+1) \pi}{2}\right]+\mathrm{sa}\left[\frac{(k-1) \pi}{2}\right]-\frac{2 x_0}{x_1} \mathrm{sa}\left(\frac{k \pi \tau}{T}\right)\right\} \\\\ k &=\pm 2, \pm 3, \pm 4 \cdots \\\\ x_{r m s} &=\sqrt{\frac{2 x_0^2 \tau}{T}+\frac{x_1^2}{2 \pi T}\left[\pi(T-2 \tau)-T \sin \left(\frac{2 \pi \tau}{T}\right)\right]} \end{aligned}
\begin{aligned} &X_k=\frac{x_0}{4}\left\{\mathrm{sa}\left[\frac{(k+1) \pi}{2}\right]+\mathrm{sa}\left[\frac{(k-1) \pi}{2}\right]\right\} ; k=0, \pm 1, \pm 2, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{4}} \end{aligned}
  \begin{aligned} &X_k=\frac{x_0\left[1+(-1)^k\right]}{4}\left\{\mathrm{sa}\left[\frac{(k+1) \pi}{2}\right]+\mathrm{sa}\left[\frac{(k-1) \pi}{2}\right]\right\} \\\\ &k=0, \pm 1, \pm 2, \cdots \\\\ &x_{r m s}=\sqrt{\frac{x_0^2}{2}} \end{aligned}
{ }^5 \text { In the table, symmetric means even symmetry about the vertical axis. }
The "Step-by-Step Explanation" refers to a detailed and sequential breakdown of the solution or reasoning behind the answer. This comprehensive explanation walks through each step of the answer, offering you clarity and understanding.
Our explanations are based on the best information we have, but they may not always be right or fit every situation.
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Already have an account?

Related Answered Questions

Question: 16.6

Verified Answer:

In (16.22), t_0  is arbitrary for ...
Question: 16.7

Verified Answer:

Using (16.22) with t_0=-T / 2  to ...
Question: 16.14

Verified Answer:

The Fourier coefficients are given in Table 16.2. ...