Chapter 10
Q. 10.14.9
Q. 10.14.9
For an incompressible viscous fluid moving under a conservative body force, show that the circulation I_{c} round a circuit c moving with the fluid is not constant in general. Deduce that I_c is constant if and only if curl w = ▽ξ, for some ξ.
Step-by-Step
Verified Solution
For the given flow, the Navier-Stokes equation is given by (10.14.6) with \textbf{b}=-\triangledown\chi.
From (6.6.4), we recall that the rate of change of circulation round a material circuit is given by
\frac{DI_{c}}{Dt}=\int_{C}\frac{Dv}{Dt}.d\textbf{x} (6.6.4)
\frac{DI_{c}}{Dt}=\oint_{c}\frac{D\textbf{v}}{Dt}.d\textbf{x} (10.14.68)
Substituting for Dv/Dt from (10.14.6) with \textbf{b}=-\triangledown\chi in (10.14.68), we get
v\triangledown^2\textbf{v}-\frac{1}{\rho}\triangledown\rho+\textbf{b}=\frac{D\textbf{v}}{Dt} (10.14.6)
\frac{DI_{c}}{Dt}=v\oint_{c}\triangledown^2\textbf{v}.d\textbf{x} (10.14.69)
Since the fluid is viscous, v\neq 0 and consequently DI_{c}/Dt\neq 0\ when\ \triangledown^2\textbf{v}\neq 0.\ Thus,\ I_{c} is not constant in general.
Since \triangledown^2\textbf{v}=-curl\ \textbf{w} for an incompressible fluid, expression (10.14.69) can be rewritten as
\frac{DI_{c}}{Dt}=-v\oint_{c}curl\ \textbf{w}.d\textbf{x} (10.14.70)
Evidently, I_{c}=constant if and only if curl w = ▽ξ for some scalar ξ.
(Thus, Kelvin’s circulation theorem is not generally valid for viscous fluids.)