Question 15.S-P.2: For the beam and loading shown, determine (a) the equation o...
For the beam and loading shown, determine (a) the equation of the elastic curve, (b) the slope at end A, (c) the maximum deflection.

Learn more on how we answer questions.
Differential Equation of the Elastic Curve. From Eq. (15.32),
\frac{d^{4}y}{dx^{4}} = – \frac{w(x)}{EI} (15.32)
EI \frac{d^{4}y}{dx^{4}} = -w(x) = -w_{0} sin \frac{πx}{L} (1)
Integrate Eq. (1) twice:
EI \frac{d^{3}y}{dx^{3}} = V = +w_{0} \frac{L}{π} cos \frac{πx}{L} + C_{1} (2)
EI \frac{d^{2}y}{dx^{2}} = M = +w_{0} \frac{L^{2}}{π^{2}} sin \frac{πx}{L} + C_{1}x + C_{2} (3)
Boundary Conditions:
[x = 0, M = 0]: From Eq. (3), we find C_{2} = 0
[x = L, M = 0]: Again using Eq. (3), we write
0 = w_{0} \frac{L^{2}}{π^{2}} sin π + C_{1}L C_{1} = 0
Thus:
EI \frac{d^{2}y}{dx^{2}} = +w_{0} \frac{L^{2}}{π^{2}} sin \frac{πx}{L} (4)
Integrate Eq. (4) twice:
EI \frac{dy}{dx} = EI θ = -w_{0} \frac{L^{3}}{π^{3}} cos \frac{πx}{L} + C_{3} (5)
EI y = -w_{0} \frac{L^{4}}{π^{4}} sin \frac{πx}{L} + C_{3}x + C_{4} (6)
Boundary Conditions:
[x = 0, y = 0]: Using Eq. (6), we find C_{4} = 0
[x = L, y = 0]: Again using Eq. (6), we find C_{3} = 0
a. Equation of Elastic Curve EIy = -w_{0} \frac{L^{4}}{π^{4}} sin \frac{πx}{L}
b. Slope at End A. For x = 0, we have
EI θ_{A} = -w_{0} \frac{L^{3}}{π^{3}} cos 0 θ_{A} = \frac{w_{0}L^{3}}{π^{3}EI} ⦪
c. Maximum Deflection. For x = \frac{1}{2} L
ELy_{max} = -w_{0} \frac{L^{4}}{π^{4}} sin \frac{π}{2} y_{max} = \frac{w_{0}L^{4}}{π^{4}EI} ↓

