Question 15.S-P.2: For the beam and loading shown, determine (a) the equation o...

For the beam and loading shown, determine (a) the equation of the elastic curve, (b) the slope at end A, (c) the maximum deflection.

 

15.2
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Differential Equation of the Elastic Curve. From Eq. (15.32),

\frac{d^{4}y}{dx^{4}} = – \frac{w(x)}{EI}                 (15.32)

EI \frac{d^{4}y}{dx^{4}} = -w(x) = -w_{0}  sin \frac{πx}{L}                                      (1)

Integrate Eq. (1) twice:

EI \frac{d^{3}y}{dx^{3}} = V = +w_{0} \frac{L}{π} cos  \frac{πx}{L} + C_{1}                         (2)

EI \frac{d^{2}y}{dx^{2}} = M = +w_{0} \frac{L^{2}}{π^{2}}  sin  \frac{πx}{L} + C_{1}x + C_{2}                             (3)

Boundary Conditions:

[x = 0, M = 0]: From Eq. (3), we find        C_{2} = 0
[x = L, M = 0]: Again using Eq. (3), we write

0 = w_{0} \frac{L^{2}}{π^{2}} sin π + C_{1}L                   C_{1} = 0

Thus:

EI \frac{d^{2}y}{dx^{2}} = +w_{0} \frac{L^{2}}{π^{2}}   sin  \frac{πx}{L}                      (4)

Integrate Eq. (4) twice:

EI \frac{dy}{dx} = EI  θ = -w_{0} \frac{L^{3}}{π^{3}}  cos  \frac{πx}{L} + C_{3}                             (5)

EI  y = -w_{0} \frac{L^{4}}{π^{4}}  sin  \frac{πx}{L} + C_{3}x + C_{4}                           (6)

Boundary Conditions:

[x = 0, y = 0]: Using Eq. (6), we find    C_{4} = 0
[x = L, y = 0]: Again using Eq. (6), we find     C_{3} = 0

a. Equation of Elastic Curve                                        EIy = -w_{0} \frac{L^{4}}{π^{4}}  sin  \frac{πx}{L}

b. Slope at End A. For x = 0, we have

EI  θ_{A} = -w_{0} \frac{L^{3}}{π^{3}}   cos  0              θ_{A} = \frac{w_{0}L^{3}}{π^{3}EI} ⦪

c. Maximum Deflection. For x = \frac{1}{2} L

ELy_{max} = -w_{0} \frac{L^{4}}{π^{4}}  sin  \frac{π}{2}                               y_{max} = \frac{w_{0}L^{4}}{π^{4}EI} ↓

15.2a
15.2b

Related Answered Questions

Question: 15.S-P.6

Verified Answer:

Principle of Superposition. Assuming the axial for...
Question: 15.S-P.5

Verified Answer:

Principle of Superposition. The reaction R_...
Question: 15.S-P.4

Verified Answer:

Principle of Superposition. The given loading can ...
Question: 15.5

Verified Answer:

Equilibrium Equations. From the free-body diagram ...