Question 10.20: For the beam shown in Figure 10.37, a 2 kg block is dropped ...
For the beam shown in Figure 10.37, a 2 kg block is dropped from the position shown onto a 16-mmdiameter rod. Calculate (a) the maximum deflection of end A, (b) the maximum bending moment in the rod and (c) the maximum normal stress developed in the rod. Assume E = 200 GPa.

Learn more on how we answer questions.
Let us draw the free-body diagram of the beam loading as shown in Figure 10.38, and first calculate the static parameters \delta_{ A }\left(M_{\max }\right)_{ st } \text { and }\left(\sigma_{\max }\right)_{ st } as follows:
Now bending moment at any distance x from end C is
M_x=\left\{\begin{array}{lr} -19.62 x N m ; & 0 \leq x \leq 0.6 m \\ -19.62 x+39.24 N m ; & x=0.6 m \\ 19.62 x-23.544 N m ; & 0.6 \leq x \leq 1.2 m \end{array}\right\}
Therefore,
\left|\left(M_x\right)_{\max }\right|=\left|M_{\max }\right|=(19.62) \times(0.6) N m =11.772 N m
And maximum bending stress is
\left(\sigma_{\max }\right)_{ st }=\frac{32 M_{\max }}{\pi d^3}=\frac{(32)(11.772)\left(10^3\right)}{\pi(16)^3}
or \left(\sigma_{\max }\right)_{ st }=29.27 MPa
Now, strain energy of beam is
U=\left\lgroup \frac{2}{2 E I} \right\rgroup \int_0^{0.6} P^2 x^2 d x \text {; where } P=19.62 N
=\left\lgroup\frac{1}{E I}\right\rgroup \frac{P^2(0.6)^3}{3}
Therefore, by Castigliano’s second theorem [refer Eq. (10.66)], we get deflection at point A where the mass strikes as
\frac{\partial U}{\partial Q_i}=\Delta_i ; \quad 1 \leq i \leq n (10.66)
\delta_{ A }=\frac{\partial U}{\partial P}=\left\lgroup \frac{2 P}{3 E I} \right\rgroup(0.6)^3=\frac{(2)(19.62)(0.6)^3}{(3)(200)\left(10^9\right) \frac{\pi}{64}(0.016)^4}
or \delta_{ A }=4.39 mm
Let dynamic amplification factor be μ, then
\mu=1+\sqrt{1+\frac{2 h}{\delta_{ st }}}
or \mu=1+\sqrt{1+\frac{80}{4.39}}=5.384
And our static results are
\left(\delta_{ A }\right)_{ st }=4.39 mm , \quad\left(M_{\max }\right)_{ st }=11.772 N m \quad \text { and } \quad\left(\sigma_{\max }\right)_{ st }=29.27 MPa
The corresponding dynamic results are
\begin{aligned} \delta_{ A } &=\mu\left(\delta_{ A }\right)_{ st }=(5.384)(4.39) mm =23.64 mm \\ M_{\max } &=\mu\left(M_{\max }\right)_{ st }=(5.384)(11.772) N m =63.38 N m \\ \sigma_{\max } &=\mu\left(\sigma_{\max }\right)_{ st }=(5.384)(29.27) MPa =157.59 MPa \end{aligned}
