Question 9.4: For the four-pole filter in Figure 9–12(b), determine the ca...
For the four-pole filter in Figure 9–12(b), determine the capacitance values required to produce a critical frequency of 2680 Hz if all the resistors in the RC low-pass networks are 1.8 Ω. Also select values for the feedback resistors to get a Butterworth response.

Learn more on how we answer questions.
Both stages must have the same f_c. Assuming equal-value capacitors,
f_c=\frac{1}{2 \pi R C}
C=\frac{1}{2 \pi R f_c}=\frac{1}{2 \pi(1.8~ \mathrm{k} \Omega)(2680 \mathrm{~Hz})}=0.033~ \mu \mathrm{F}
C_{A 1}=C_{B 1}=C_{A 2}=C_{B 2}=\mathbf{0 . 0 3 3} ~\boldsymbol{\mu} \mathrm{F}
Also select R_2=R_4=1.8 ~\mathrm{k} \Omega for simplicity. Refer to Table 9–1. For a Butterworth response in the first stage, DF = 1.848 and R_1 / R_2=0.152. Therefore,
R_1=0.152 R_2=0.152(1800~ \Omega)=274~ \Omega
Choose R_1 = 270 Ω.
In the second stage, DF = 0.765 and R_3 / R_4=1.235. Therefore,
R_3=1.235 R_4=1.235(1800~ \Omega)=2.22~ \mathrm{k} \Omega
Choose R_3= 2.2 kΩ.
PRACTICE EXERCISE
For the filter in Figure 9–12(b), determine the capacitance values for f_c = 1 kHz if all the filter resistors are 680 Ω. Also specify the values for the feedback resistors to produce a Butterworth response.
TABLE 9–1 • Values for the Butterworth response. | ||||||||||
ORDER | ROLL-OFF DB/DECADE |
1ST STAGE | 2ND STAGE | 3RD STAGE | ||||||
POLES | DF | R_1/R_2 | POLES | DF | R_3/R_4 | POLES | DF | R_5/R_6 | ||
1 | -20 | 1 | Optional | |||||||
2 | -40 | 2 | 1.414 | 0.586 | ||||||
3 | -60 | 2 | 1.00 | 1 | 1 | 1.00 | 1 | |||
4 | -80 | 2 | 1.848 | 0.152 | 2 | 0.765 | 1.235 | |||
5 | -100 | 2 | 1.00 | 1 | 2 | 1.618 | 0.382 | 1 | 0.618 | 1.382 |
6 | -120 | 2 | 1.932 | 0.068 | 2 | 1.414 | 0.586 | 2 | 0.518 | 1.482 |